
SQL/R

Report Generator
for HP ELOQUENCE
Supplement to Revision A.01.50

��

The information contained in this document is subject to change without notice.

Marxmeier Softwareentwicklung (mse) makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Marxmeier Softwareentwicklung shall not be liable for
errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

Published Editions:
A.01.00 - 1992
A.01.36 - July 1995,Supplement
A.01.50 - August 1996, Supplement

c
 1992-1996 Marxmeier Software Entwicklung GmbH Wuppertal, Germany.

This document contains information which is protected by copyright. All rights are reserved.
Reproduction, adaption or translation without prior written permission is prohibited, except
under the copyright laws.

Restricted Rights Legend. Use, duplication or disclosure by the U.S. Government De-
partment of Defense is subject to restrictions as set forth in subparagraph (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause in DFARS 252.227-7013. Rights
for non-DOD Government Departments and Agencies are set as forth in the Commercial
Computer Software Restricted Rights clause, FAR 52.227-19 (c) (1,2).

HP ELOQUENCE is a protected trademark of Hewlett-Packard GmbH.

HP-UX is a protected trademark of Hewlett-Packard Inc.

Preface

This supplement to the SQL/R manual contains a complete description of additional func-
tionality that has been implemented into SQL/R since the publication of the manual.

This supplement is on the SQL/R release A.01.36. HP-UX release 9.x is a prerequisite to
this version.

In order to use SQL/R with HP-UX 10.x, you need SQL/R release A.01.40 or above, which
will be released in August 1995.

Topics

Chapter 1 Installation
This chapter describes the new installation procedure.

Chapter 2 New Functions
New string, date, time and arithmetic functions.

Chapter 3 New Commands
New SQL/R languange commands.

Chapter 4 Command Enhancements
Extensions to SQL/R commands.

Appendix A Up-dated short reference of the SQL/R languange
Short reference of the SQL/R language, including new and extended com-
mands and functions.

Appendix B Mapping of Character Sets
Mapping SQL/R and terminal character sets.

Appendix C Using Terminal Printers
Output of files or data to the terminal printer using lprint.

SQL/R A.01.50

Preface iii

Typographical Conventions

Unless otherweise noted, this manual uses the following symbolic conventions:

Computer Font Computer font indicates commands, keywords, options, literals,
source codes, system outputs and path names.

�

�

�

�
The symbol

�

�

�

�
indicates a key on a computer keyboard or an

area or “button” on screen that can be activated by your mouse. For
example,

�

�

�

�
CTRL indicates the Control key and

�

�

�

�
Continue is an on

screen button.
�

�

�

�
CTRL -

�

�

�

�
char The symbol

�

�

�

�
CTRL -

�

�

�

�
char indicates a control character. For exam-

ple
�

�

�

�
CTRL -

�

�

�

�
Y means you have to simultaneous press the Control

key and the Y key on the keyboard.

italics Within syntax statements, a word in italics represents a formal pa-
rameter or argument that you have to replace with an actual value.
In the following example, you must substitute filename by the name
of the file to be printed:

lp filename

[] Within syntax statements, brackets enclose optional elements. In
the following example, brackets around [-ddev] indicate that the
parameter and its delimiter are optional:

lp [-ddev] filename

f g Within syntax statements, braces indicate that you must choose one
of the listed items. In the following example, the braces around
f-c|-x|-vg indicate, that you must choose one othe the argu-
ments:

tar f-c|-x|-vg

SQL/R A.01.50

Preface iv

Additional Reading

The following additional documentation is referred to in this manual:

SQL/R Manual

The SQL/R manual contains a detailed description of the SQL/R syntax and com-
mands.

HP-UX (online) Documentation

References of the formservices(4) refer to the given topic or item (hereservices)
contained in the indicated section (here 4) of the HP-UX-reference manual. It is also
possible to obtain this documentation on-line using the command man, whereby in
the case of services(4) the user should enter the following statement:

man 4 services

SQL/R A.01.50

Contents

1 Installation 1

1.1 Installation overview . 2

1.2 Installation on HP-UX 9.x . 3

1.3 Installation on HP-UX 10.x . 4

1.4 Delete the old SQL/R version . 5

1.5 The SQL/R license key . 5

1.6 Additional information . 6

1.7 New product structure . 6

2 New Functions 9

2.1 Conversion of Data Types . 11

2.1.1 @CHAR . 11

2.1.2 @DATETOCHAR . 11

2.1.3 @DATEVALUE . 12

2.1.4 @NUM . 13

2.1.5 @STRING . 14

2.1.6 @TIMEVALUE . 17

2.1.7 @VALUE . 18

2.2 Manipulation of Character Strings . 19

2.2.1 @LEFT, @RIGHT, @SUBSTR 19

2.2.2 @LENGTH . 20

2.2.3 @LOWER, @UPPER . 20

2.2.4 @POS . 21

2.2.5 @RPT . 22

SQL/R A.01.50

Contents vi

2.2.6 @TRIM . 22

2.3 Numeric Functions . 23

2.3.1 @ABS . 23

2.3.2 @DIV . 23

2.3.3 @FRACT . 24

2.3.4 @INT . 25

2.3.5 @MOD . 25

2.3.6 @ROUND . 26

2.4 Date and Time Functions . 27

2.4.1 @DATE . 27

2.4.2 @TIME . 27

2.4.3 @DIFFTIME . 28

2.4.4 @DAY, @MONTH, @YEAR, @QUARTER, @WEEKDAY 29

2.4.5 @HOUR, @MINUTE, @SECOND 30

2.4.6 @WEEKBEG, @MONTHBEG, @QUARTERBEG, @YEARBEG 30

2.4.7 @WEEKS, @DAYS, @HOURS, @MINUTES, @SECONDS . . . 31

3 New SQL/R functionality 33

3.1 Comments . 33

3.1.1 Comment Line . 33

3.1.2 Comment Paragraph . 34

3.2 Using Environment Variables . 35

3.3 The Constant NULL . 35

3.4 The Constant @NOW . 36

3.5 New SET command clauses . 37

3.5.1 SET ECHO . 37

3.5.2 SET COLSEP . 37

SQL/R A.01.50

Contents vii

3.5.3 SET ROWSEP . 37

3.5.4 SET NULL . 38

3.5.5 SET OVERFLOW . 38

4 Enhancement of SQL/R statements 40

4.1 The REPORT SELECT - statement . 40

4.2 The FIELD - statement . 41

4.3 The WHERE - Condition . 44

4.4 The CREATE VIEW - statement . 45

A Short Reference 46

A.1 SQL/R Commands . 46

A.2 Constants . 50

A.3 Functions . 50

B Character Set Mapping 51

B.1 How does this work ? . 51

B.2 SQL/R Editor . 51

B.3 tmap . 52

B.4 iconv . 52

B.5 sqlrexec . 53

B.6 Supporting Other Terminal Names . 53

C Using the terminal printer (lprint) 54

C.1 Using lprint . 54

C.2 How to configure lprint to different terminals 54

SQL/R A.01.50

1
Installation

The installation procedure has been changed for the SQL/R product starting with release
A.01.40. The installation procedure as described in the printed manual no longer applies.
The new installation procedure is described in this document for HP-UX 9.x and HP-UX
10.x.

Major changes of SQL/R release A.01.50 include:

� SQL/R A.01.50 can only be installed an run on the HP-UX operating system release
9.x or later.

� SQL/R no longer needs its own installation or update tools, as it is now installed and
updated by the usual operatin system tools.

� SQL/R uses a new licence scheme. Instead of “branding” the executable files with a
system id, a licence file named licence is now present at

HP-UX 10.x /etc/opt/sqlr
HP-UX 9.x /opt/sqlr/etc

The licence file is a plain text file which contains all licences which apply to the
SQL/R product. The /opt/sqlr/etc/chklic utility may be used to check th
licence file.

� SQL/R A.01.50 has a different file structure than recent SQL/R releases in order to
be HP-UX 10.x compliant. This new file structure is also provided on HP-UX 9.x.

� Optional products are no longer installed seperately. All files related to the SQL/R
product will be installed automatically. This includes SQL/R Windows Client and
SQL/R ODBC. Please note, that you need an apropriate licence entry in the license
file in order to use optional extensions.

Please refer to /opt/sqlr/newconfig/ReleaseNotes for more details.

SQL/R A.01.50

1.1 Installation overview 2

1.1 Installation overview

In order to use SQL/R, you need a license key. You should either have received a temporary
license key along with the SQL/R software, or you can request your license key from your
distributor or Marxmeier Software Entwicklung GmbH using the included fax form.

If this is an update, please check that SQL/R is not currently active. If you have SQL/R
Windows Client or QUERY ODBC, please check that the daemons are no longer active.

Please note: You need about 10 MBytes of available disc space for installation in the file
system, which contain /tmp and the /opt directories.

If this is an update of SQL/R from a revision before A.01.40, you may want to delete old
software which is located at /usr/sqlr. This must be performed manually.

Please check for references to the former SQL/R location in your PATH variable. You
might want to check /etc/profile and .profile in the users home directories.

If this is a new installation or an update to a SQL/R version before A.01.40, you must add
your license key to the license file.

SQL/R A.01.50

Installation 3

1.2 Installation on HP-UX 9.x

As “superuser”, follow the steps below.

1. Login as root

2. Insert the SQL/R DDS tape into your tape drive and extract the software from tape
to temporary location.

cd /tmp
tar xv /dev/rmt/0m SQLR.updt

where /dev/rmt/0m is your DDS tape device file.

3. To install SQL/R run “update (1m)” by typing:

/etc/update

� Select “Change Source or Destination ->”.

� Select “From Tape Device to Local Sytem..”.

� Tab to the “Source” field and enter the following commands:

/tmp/SQLR.updt

� Press F4 Done.

� Select “Select/View Partitions and Filesets...”.

� Activate the “SQL/R” partitionand additional either the “SQLR-E” (for English
localisation) or the “SQLR-E” (for German localisation) partition.

� Select F4 “Start Loading”

� Type “Y” to start “Start loading filesets now?”.

4. Check /tmp/update.log to make sure installation completed with no error.

5. You may want to include SQL/R in your PATH. To archieve this for all users, you
may edit the /etc/profile. Append the following line:

PATH=$PATH:/opt/sqlr/bin

To include SQL/R in the path of an individual user, you may add the line to the
.profile in the home directory.

6. Add the license key to the file licence.

SQL/R A.01.50

1.3 Installation on HP-UX 10.x 4

1.3 Installation on HP-UX 10.x

As “superuser”, follow the steps below to install the SQL/R software:

1. Login as root

2. Insert the SQL/R DDS tape into your tape drive and extract the software from tape
to temporary location.

cd /tmp
tar xv /dev/rmt/0m SQLR.updt

where /dev/rmt/0m is your DDS tape device file.

3. To install SQL/R run “swinstall” by typing:

/usr/sbin/swinstall -s /tmp/SQLR.sd

where /tmp/SQLR.sd is the path to the file extracted from the DDS tape.

� In the Software Selection Window, highlight to select the “SQL/R-E” product
(for Englisch localisation) or the “SQLR-G” product (for German localisation).

� Then coose the “mark for install” item from the Actions Menu. The “Marked?”
column will be automatically be set to “Yes”.

� Select the “Install (analysis...)” item from the Actions Menu. When the analysis
is finished with no error, (Status: Ready, click O.K.

� Click YES in the Confirmation window to begin the actual installation.

4. When the installation is completed, a dialog is displayed to notify you that the install
task is completed. You may exit then.

5. You may want to include SQL/R in your PATH. To archieve this for all users, you
may edit the file /etc/PATH. Append the following:

:/opt/sqlr/bin

To include SQL/R in the path of an individual user, you may add the line below to
the .profile in the home directory:

PATH=$PATH:/opt/sqlr/bin

6. Add the license key to the file licence.

SQL/R A.01.50

Installation 5

1.4 Delete the old SQL/R version

If this is an update of SQL/R from a revision before A.01.40, you may want to delete old
software which is located at /usr/sqlr. This must be performed manually.

Warning: The procedure below will remove all files stored in the tree under /usr/sqlr!
If you installed your own files you should move them to a save location first.

Deleting the old SQL/R software may acomplished by the following commands:

1. Login as root.

2. Change into the directory /usr

cd /usr

3. Remove the directory sqlr

rm -rf sqlr

4. Change into the directory /usr/bin:

cd /usr/bin

5. Remove the following files:

rm sqlr sqlred sqlrexec

6. Change into the directory /usr/lib/nls:

cd /usr/lib/nls

7. Remove the old message files of SQL/R:

rm /C/sqlr.cat
rm /german/sqlr.cat

1.5 The SQL/R license key

In order to use SQL/R, you need a license key. You should either have received a temporary
license key along with the SQL/R software, or you can request your license key from your
distributor or Marxmeier Software Entwicklung GmbH using the included fax form.

To install the ODBC license key, perform the following steps:

SQL/R A.01.50

1.6 Additional information 6

1. Login as root.

2. Add the license key to your license file using your favorite editor program. The
location of the license file depends on the revision of the HP-UX operating system:

HP-UX 9.x /opt/sqlr/etc/licence
HP-UX 10.x /etc/opt/sqlr/licence

You can use the /opt/sqlr/etc/chklic utility program to check your license
file.

Please note: The license key must by typed exactly as on the license sheet.

1.6 Additional information

Please refer to directory /opt/sqlr/newconfig/ReleaseNotes, for further docu-
mentation about fixed problems or enhancement documentation.

Directory /opt/sqlr/newconfig/ReleaseNotes contains the following files:

README.g Release Notes in German language
README.e Release Notes in English language
README.srv SQL/R Windows Client Server Side Release Notes
README.odbc SQL/R ODBC Server Side Release Notes
INSTALL How to install or update SQL/R
A.01.35 SQL/R A.01.35 release notes
A.01.40 SQL/R A.01.40 release notes
A.01.41 SQL/R A.01.41 release notes
A.01.42 SQL/R A.01.42 release notes
A.01.50 SQL/R A.01.50 release notes

Files with the extention “g” are in german language, files with extention “e” ore no extention
are in english language.

1.7 New product structure

With the release of HP-UX 10.0, Hewlett Packard has introduced a new file system layout
paradigm, modelled after SVR4 and OSF. The model provides many benefits, such as
separating the operation system from applications ans aligning HP with an industry-accepted
file system layout. SQL/R since release A.01.40 follows the HP-UX 10.0 file system
conventions and provides a similar file structure with HP-UX 9.x and HP-UX 10.x.

SQL/R A.01.50

Installation 7

/opt/sqlr/ Base directory
|
|-- etc/ Utility programs
| HP-UX 9.x: Application specific
| configuration files
|
|--- bin/ Executable programs
|
|--- lib/ Libraries
| |
| |-- nls/
| |
| |-- C/ Default message catalog
| |-- german/ German message catalog
|
|--- newconfig/
| |
| |-- ReleaseNotes/ Release Notes
| |
| |-- etc/ Example licence file
| |
| |-- startup/ HP-UX 10.0 startup/shutdown scripts
|
|
|--- share/
| |
| |--- map/ Character set mappings
| |
| |--- sample/ Example scripts (from manual)
| | Linked to a language dependend directory
| |--- sample.e/ - English example scripts
| |--- sample.g/ - German example scripts
| |
| |--- db/ Example database
| | Linked to a language dependend directory
| |--- db.e/ - English example database
| |--- db.g/ - German example database
| |
| |--- example/ Example programs

The following directories are only present with HP-UX 10.x:

/etc/opt/sqlr/ Application specific
configuration files

SQL/R A.01.50

1.7 New product structure 8

/var/opt/sqlr/ Application specific temporary
files

/etc/rc.config.d/ Startup configuration files

/sbin/
|
| --- init.d/ Startup and shutdown scripts
|
| --- rc1.d/ Startup and shutdown link files
| --- rc2.d/ for script sequencing

SQL/R A.01.50

2
New Functions

This chapter covers a detailed description of new SQL/R functions. Some functions having
related or similar activities are described together as "Family".

Every entry consists of the following parts:

� a short description of the function

� syntax definition showing how to use the function

� a detailed description of the activity of the function

� return value if any

� example showing how to use the function

Functions are used to modify existing fields or define new fields and expressions. Because
of this, all functions begin with the character “@” in order to avoid possible conflicts with
existing field names.

Functions fall into the following categories:

� Conversion of data types
This functions convert data from one data type to the other. For example, strings can
be converted into numeric values or date formats and vice versa.
@CHAR @NUM @VALUE
@DATETOCHAR @STRING
@DATEVALUE @TIMEVALUE

� Manipulation of Character Strings

@LEFT @POS @SUBSTR
@LENGTH @RIGHT @TRIM
@LOWER @RPT @UPPER

� numeric Functions
@ABS @FRACT @MOD
@DIV @INT @ROUND

SQL/R A.01.50

New Functions 10

� Date and Time Functions
@DATE @MINUTE @SECONDS
@DATETOCHAR @MINUTES @TIME
@DATEVALUE @MONTH @TIMEVALUE
@DAY @MONTHBEG @WEEKBEG
@DAYS @NOW @WEEKDAY
@DIFFTIME @QUARTER @WEEKS
@HOUR @QUARTERBEG @YEAR
@HOURS @SECOND @YEARBEG

Some of the functions given here are part of SQL/R (cf. chapters 6.7 pp.), though without
the leading “@” character. Because of compatibility, the old versions of such functions are
still supported. For the sake of uniformity they should however no longer be used in new
scripts.

SQL/R A.01.50

New Functions 11

2.1 Conversion of Data Types

2.1.1 @CHAR

Activity
Conversion of a numeric value into a character

Syntax
@CHAR(value)

Description
@CHAR returns the character that corresponds to the argument value.

To obtain a meaningful result, the value should be in the range of 0 and 255. In cases
where value is not in this interval, the value will be ANDed bitwise with 255, so that
the function always returns a corresponding character.

Return Value
The function returns the character corresponding to the argument value.

Example

@CHAR(49) and @CHAR(-207) return both "1"
@CHAR(65) and @CHAR(321) return both "A"

2.1.2 @DATETOCHAR

Activity
Conversion of a date-value into a string.

Syntax
@DATETOCHAR(Date, Format)

Description
@DATETOCHAR converts the date-value given by the argument Date into a string and
returns this. The format for the string output is described in the argument Format. A
list of permitted formats is given in appendix B of the SQL/R manual. The resulting
string depends on your working environment (NUMERIC).

Return Value
The generated string is returned.

SQL/R A.01.50

2.1 Conversion of Data Types 12

Example

The constant @NOW used in the example below is the date-value of the current day (today).
It is explained later in this manual. The following results are obtained in accordance with
the given formats.

@DATETOCHAR(@NOW, "%c") returns:
"Mon May 22 1995, 17:58:29"

@DATETOCHAR(@NOW, "Today is the %d.%m.%y") returns:
"Today is the 22.05.95"

2.1.3 @DATEVALUE

Activity
Converts a string or string expression into a date-value.

Syntax
@DATEVALUE(String)

Description
@DATEVALUE converts the string given by the argument String into the internal date
format (the number of seconds since 01/01/1970). For a list of the supported date
formats, please refer to the example below. Please note that constant date-values (e.g.
"@01/01/95") do not have to be converted since this is done internally by SQL/R.

Return Value
The function returns the corresponding date-value. The return value is NULL if
String does not define a correct date (e.g "Today is the 07/22/93").

Example

The following calls of the @DATEVALUE function all return the date-value 743292000:

@DATEVALUE("07/22/93")
@DATEVALUE("22.07.93")
@DATEVALUE("930722")

SQL/R A.01.50

New Functions 13

The example below retrieves all records that have a transaction date between 01/01/95 and
today’s date.

SELECT ... WHERE @DATEVALUE("01/01/95") <= trdate <= @NOW;

The same instruction using BETWEEN ... AND ... would result in an error message
since the results of a function is not considered a constant value.

2.1.4 @NUM

Activity
Returns the numeric value corresponding to the ASCII code of the first character of
the string argument.

Syntax
@NUM(String)

Description
@NUM returns the numeric value of the first character of the string indicated by the
argument String. This can be a normal text as well as a string consisting of individual
characters. Please note that the backslash character ("\") within a string is a control
character which removes the special meaning of the following character. Therefore,
"\" is a syntax error, because the second "will be treated as a printable character, not
as the end of the quoted string. (see Example)

Return Value
The function returns the determined value (code).

Example

@NUM("A") returns the value 65
@NUM("\A") returns the value 65
@NUM("Example") returns the value 66

@NUM("\") Wrong
@NUM("\\") OK
@NUM(""") Wrong
@NUM("\"") OK
@NUM('"') Correct and simpler

SQL/R A.01.50

2.1 Conversion of Data Types 14

2.1.5 @STRING

Activity
Conversion of a numeric value into a string.

Syntax
@STRING(format, number)

Description
@STRING converts number into a string. The output format is defined by the
argument format. The result depends on the working environment (NUMERIC).

The argument format is a string that has the following syntax:
% [Flags] [Width] [.Precision] Type

Compoment Meaning
% Each conversion specification is introduced by the

character %. If it is not present, then the rest of the
instruction is interpreted as a normal text.

[Flags] Zero or more flags, which modify the meaning of the
conversion specification.

[Width] An optional string of decimal digits to specify a min-
imum field width in bytes. If the converted value has
fewer characters than the field width, it is be padded to
the field width (according to Flags). If the field width
is preceded by a zero, the string is right adjusted with
zero-padding on the left

[.Precision] The precision gives the number of digits to appear
after the radix character for the "f" conversion and
the maximum number of significant digits for the "g"
conversion. The precision takes the form of a period
followed by a decimal digit string; a null digit string
is treated as zero.

[Type] A conversion character that indicates the type of con-
version to be applied. This is the last character of the
formating instruction. If it is missing, then the func-
tion returns a wrong result. The only permitted types
are "f" and "g".

SQL/R A.01.50

New Functions 15

[Flags] Meaning
negative sign
(-)

Left justified output, in which blanks are added if nec-
essary. The default setup gives right justified output
with leading zeros or blanks.

Positive sign
(+)

Always include a sign character. By default, the output
has a sign only if it is a negative numeric value.

Empty space () Positive values begin with blanks and negative values
with negative signs.

Hash sign (#) Always include a decimal point in the output. Ad-
ditionally, if the output is of the type g, then trailing
zeros are not suppressed.

[Width] Meaning
n Output of at least n characters. The output is right

justified by default, so leading blanks are added if
necessary. If the Flag - (left justify) is given, trail-
ing spaces are appended instead.

0n Output at least n characters. Leading zeros are added
if necessary.

SQL/R A.01.50

2.1 Conversion of Data Types 16

Type [.Precision] Meaning

f The argument is converted to decimal notation in the
style [-]dddrddd, where r is the radix character. The
number of digits after the radix character is equal to the
precision specification. The last digit is determined by
rounding if necessary.

none If the precision is missing, six digits are output.

.0 or . If the precision is explicitly zero, no radix character
appears. The output contains only the whole number
part without a decimal point and decimal places.

.n The output has n decimal places.

g The argument is converted to decimal notation in the
style [-]dddrddd, or [-]drddde[+/-]dd where r is the
radix character and e is the exponent. Precision speci-
fies the number of significant digits. Trailing zeros are
removed from the fractional part of the result; a radix
character appears only if it is followed by a digit. The
last digit is determined by rounding if necessary.

none If the precision is missing,up to six significant decimal
digits are output.

.0 or . The output is formatted in exponential form.

.n The output has up ton significant digits. If n is smaller
than the number of digits before the decimal, then the
result is formatted in exponential form.

While the type f specifies the number of decimal places, the output format g specifies
the number of significant digits.

Return Value
The function returns the generated string.

Example

SET LOCALE "NUMERIC=C";
@STRING("%06.3g", 1.2345) returns "001.23"

SET LOCALE "NUMERIC=german";

SQL/R A.01.50

New Functions 17

@STRING("%06.3f", 1.2345) returns "01,235"
@STRING("%06.3g", 1.2345) returns "001,23"
@STRING("%+6.3f", 1.2345) returns "+1,235"
@STRING("%+6.3g", 1.2345) returns " +1,23"
@STRING("%-6.3f", 1.2345) returns "1,235 "
@STRING("%-6.3g", 1.2345) returns "1,23 "

2.1.6 @TIMEVALUE

Activity
Converts a string value into a time-value

Syntax
@TIMEVALUE(String)

Description
@TIMEVALUE converts the string given by the argument String into the corresponding
time-value, i.e the number of seconds since midnight. For a list of supported time
formats, please refer to the examples below. Please note that constant time-values
(e.g. "@12:30:15") do not have to be converted explecitly since the conversion is
done by SQL/R internally.

Return Value
The function returns the corresponding time-value. The return value is NULL if
String does not define a correct time (for example "It is now 15:10:20").

Example

Both the following calls of @TIMEVALUE return the value 54302:

@TIMEVALUE("15:05:02")
@TIMEVALUE("150502")

The calls of @TIMEVALUE without the value for the seconds given in the argument return
the corresponding value 54300:

@TIMEVALUE("15:05")
@TIMEVALUE("1505")

SQL/R A.01.50

2.1 Conversion of Data Types 18

2.1.7 @VALUE

Activity
Conversion of a string or string expression into a number.

Syntax
@VALUE(String)

Description
@VALUE converts the string given by the argument String into the corresponding
numeric value. The decimal point can be either a "." or a character that is defined by
the working environment (NUMERIC).
Please note that the conversion always stopps as soon as an invalid character is
encountered in the string.

Return Value
The function returns the numeric value which is always of type double. This is true
even when the value is an integer number.

Example

SET LOCALE "NUMERIC=C";
@VALUE("12.34") returns 12.34
@VALUE("12,34") returns 12.00

In the second case, the comma (",") is not permitted and the conversion is stopped.

SET LOCALE "NUMERIC=german";
@VALUE("12.34") returns 12,34
@VALUE("12,34") returns 12,34

Please be aware that the return value is of type double.

FIELD xx = IF (..., @VALUE("100"), 10);

This instruction returns an error message because of different data types on possible values
returned of the IF. The right formulation of this instruction is as follows

FIELD xx = IF (..., @VALUE("100"), 10.0);

By specifying a decimal point, the constant "10" is explicitly recognized as a value of type
double.

SQL/R A.01.50

New Functions 19

2.2 Manipulation of Character Strings

2.2.1 @LEFT, @RIGHT, @SUBSTR

Activity
This function can be used to extract and copy parts of existing strings.

Syntax
@LEFT(String, number)
@RIGHT(String, number)
@SUBSTR(String, Start, number)

Description
The functions@LEFT, @RIGHT and @SUBSTR each exracts number characters from
a string defined by the argument String and returns it.

If number is longer than the length of the string designated by String then the whole
string is returned without filling the remaining character positions with spaces.

The difference between the three functions is the position where each of them starts
extracting the required character string. The function @LEFT extract the required
characters from the beginning of the string, @RIGHT from the end and @SUBSTR
starts its extraction from the position given by the argument Start, whereby the first
character in the string has position 0.

Return Value
The function delivers the extracted string character. It returns NULL if either the
argument number or Start or both have invalid values (e.g smaller than 0).

Example

@LEFT("1234567890", 5) returns "12345"
@LEFT("123", 5) returns "123"

@RIGHT("1234567890", 5) returns "67890"
@RIGHT("123", 5) returns "123"

@SUBSTR("1234567890", 4, 3) returns "567"
@SUBSTR("1234567890", 7, 5) returns "890"

SQL/R A.01.50

2.2 Manipulation of Character Strings 20

2.2.2 @LENGTH

Activity
Determines the length of a string.

Syntax
@LENGTH(String)

Description
The function @LENGTH determines the number of characters (length) of the string
indicated by the argument String.

Return Value
The function returns the determined length.

Example

@LENGTH("1234567890") returns the number 10

2.2.3 @LOWER, @UPPER

Activity
Conversion of lower case to upper case (small letters to capital letters) and upper case
to lower case characters respectively.

Syntax
@LOWER(String)
@UPPER(String)

Description
The function @LOWER converts the characters contained in the argument String to
capital letters, while the function @UPPER does the opposite, i.e converts capital
letters contained in String to small letters.

The conversion depends on the selected working environment (LANG and CTYPE).
This is important, if European letters (like ä, ö, ü, Ä, Ö, Ü) are being converted.

Return Value
The function returns the converted string of characters.

SQL/R A.01.50

New Functions 21

Example

@UPPER("test") returns "TEST"
@LOWER("TEST") returns "test"

SET LOCALE "CTYPE=C";
SELECT @UPPER("ÈaÈoÈuû"), @LOWER("ÈAÈOÈUû");

gives the following output: "ÈaÈoÈuû ÈAÈOÈUû"

SET LOCALE "CTYPE=german";
SELECT @UPPER("ÈaÈoÈuû"), @LOWER("ÈAÈOÈUû");

gives the following output: "ÈAÈOÈUû ÈaÈoÈuû"

2.2.4 @POS

Activity
Searches for the occurrence of a string within another string.

Syntax
@POS(String1, String2)

Description
The function @POS returns the position of the first occurrence of the string indicated
by the argument String2 in the string given by the argument String1.

Return Value
The function returns the position of the beginning of String2. If String2 is not
contained in String1 then the return value is 0.

Example

@POS("1234512345", "34") returns position 3
@POS("1234512345", "XX") returns the value 0

SQL/R A.01.50

2.2 Manipulation of Character Strings 22

2.2.5 @RPT

Activity
Constructs a new string by repeatedly appending a given string.

Syntax
@RPT(String, number)

Descripion
The function @RPT returns a string value constructed by appending the string argu-
ment String number times.

Return Value
The function returns either the constructed string or NULL if the value of the argument
number is not permitted.

Example

@RPT("ABC", 3) returns the string "ABCABCABC"
@RPT("-", 10) returns the string "----------"
@RPT("ABC", 0) returns an empty string ""
@RPT("ABC", -1) returns NULL

2.2.6 @TRIM

Activity
Deletes leading and trailing spaces from a string.

Syntax
@TRIM(String)

Description
The function @TRIM deletes all the leading and trailing spaces from the character
string String.

Return Value
The function returns the modified string.

Example

@TRIM(" A B C ") returns "A B C"

SQL/R A.01.50

New Functions 23

2.3 Numeric Functions

2.3.1 @ABS

Activity
Determines the absolute value of a number.

Syntax
@ABS(number)

Description
The function@ABS computes the absolute value of the number given by the argument
number. The return type is double, so @ABS will inherit the default output format
of the double format having two decimal places. The output will be rounded if
necessary. The FIELD ... DISPLAY AS statement may be used to specify a
different output format.

Return Value
The function returns the absolute value of the given number. The return type is
double.

Example

FIELD v1 = -1.236;
FIELD v2 = @ABS(v1);
FIELD v3 = v2 * 100.0;
FIELD v4 = @ABS(v1) DISPLAY AS DOUBLE(8,4);

SELECT v1, v2, v3, v4;

this instruction returns the following result:
V1 V2 V3 V4

-1,236 1,24 123,6 1,2360

2.3.2 @DIV

Activity
Determines the whole number part of the result of the division of a number by another
number.

Syntax
@DIV(number, Divisor)

SQL/R A.01.50

2.3 Numeric Functions 24

Description
The function@DIV divides the number given by the argument number by the Divisor
and returns the whole number part of the quotient.

Return Value
The function returns the whole number portion of the quotient. The data type of the
result is the same as that of the argument number.

Example

@DIV(20, 3) returns the value 6 of type int
@DIV(20.0, 3) returns the value 6.00 of type double

2.3.3 @FRACT

Activity
Computes the difference of a number from the next smaller whole number.

Syntax
@FRACT(number)

Description
The function @FRACT determines the difference between the number given by the
argument number and the next whole number smaller than number. Please note that
if number is negative, then the result obtained from this function differs from that of
HP Eloquence.

Return Value
The function returns the computed difference, which is always positive.

Example

@FRACT(1.48) returns 1.48 - 1.00 = 0.48
@FRACT(1.78) returns 1.78 - 1.00 = 0.78
@FRACT(-1.48) returns -1.48 - (-2.00) = 0.52
@FRACT(-1.78) returns -1.78 - (-2.00) = 0.22

SQL/R A.01.50

New Functions 25

2.3.4 @INT

Activity
Returns the largest integer not greater than number.

Syntax
@INT(number)

Desciption
The function @INT returns the largest integer not greater than number.

Return Value
The function returns determined value.

Example

@INT(1.48) returns 1.00, @INT(-1.48) returns -2.00
@INT(1.78) returns 1.00, @INT(-1.78) returns -2.00

2.3.5 @MOD

Activity
Determines the remainder from the division of two numbers.

Syntax
@MOD(number, Divisor)

Description
The function @MOD divides the number given by the argument number by Divisor
and returns the remainder. The remainder is defined as (number - Divisor * quotient),
where the quotient is a whole number. Please note that if number and Divisor are
negative, then the result obtained from this function differs from that of HP Eloquence.

Return Value
The function returns the remainder from the division. The data type of the return
value depends on the type of the argument number and on the computed value. If
number is of typeint and the remainder is a whole number, then the result is of type
int otherweise it is of type double.

SQL/R A.01.50

2.3 Numeric Functions 26

Example

@MOD(20 , 3.5) returns 2.5 of type double
@MOD(-20 , 3) returns -2 of type int
@MOD(20., -3) returns 2.0 of type double
@MOD(-20., -3.5) returns -2.5 of type double

2.3.6 @ROUND

Activity
Rounds a number to a given accuracy

Syntax
@ROUND(number, accuracy)

Description
The function @ROUND rounds the number given by the argument number according
to the accuracy prescribed by the argument accuracy. Accuracy is specified in the
means of power of ten. So an accuracy value of -2 would specify an accuracy of
10
�2 or two decimal places.

Return Value
The function returns the rounded number, which is always of type double.

Example

@ROUND(1.494, 0) is 1.00, @ROUND(1.5, 0) is 2.00
@ROUND(-1.494, 0) is -1.00, @ROUND(-1.5, 0) is -2.00
@ROUND(1.494, -2) is 1.49, @ROUND(1.5, -1) is 1.50
@ROUND(-1.495, -2) is -1.50, @ROUND(-1.5, -1) is -1.50
@ROUND(4.995, 1) is 0.00, @ROUND(5.0, 1) is 10.00
@ROUND(-4.995, 1) is 0.00, @ROUND(-5.0, 1) is -10.00

SQL/R A.01.50

New Functions 27

2.4 Date and Time Functions

2.4.1 @DATE

Activity
Computes the date from the given values of the year, month and day.

Syntax
@DATE(year, month, day)

Description
The function @DATE uses the arguments year, month and day to determine a corre-
sponding date-value (i.e the number of seconds since 01/01/1970). The DISPLAY
AS DATE rule may be used to specify the output format.

Return Value
The function returns the computed date-value of type long.

Example

FIELD f_date = @DATE(95, 5, 20)
DISPLAY AS DATE("%d.%m.%y");

SELECT f_date, @DATE(95, 5, 20), @20.05.95;

Both instructions return the following result:
F_DATE @DATE(95,5,20) 20.05.95
20.05.95 800920800 800920800

2.4.2 @TIME

Activity
Computes the time-value from values given for hour, minute and second.

Syntax
@TIME(hour, minute, second)

Description
The function @TIME uses the arguments hour, minute and second to determine a
corresponding time-value (i.e the number of seconds since midnight). TheDISPLAY
AS TIME rule may be used to specify the output format.

SQL/R A.01.50

2.4 Date and Time Functions 28

Return Value
The function returns the computed time-value.

Example

FIELD f_time = @TIME(15, 02, 02) DISPLAY AS TIME(8);
SELECT f_time, @TIME(15, 05, 02), @15:05:02, @150502;

Both instructions return the following result:
F_TIME @TIME(15,05,02) 15:05:02 150502

15:02:02 54302 54302 54302

2.4.3 @DIFFTIME

Activity
Determines the difference between two time-values in seconds

Syntax
@DIFFTIME(date1, date2)

Description
The function @DIFFTIME computes the number of seconds between the two dates
Date1 and Date2.

Return Value
The function returns the computed difference, where this is negative if Date2 is later
than Date1.

Example

Date 1 = @NOW = 802983720
Date 2 = @DATE(93, 7, 22) = 743292000

The call of @DIFFTIME with these arguments returns
the following result:

@DIFFTIME(@NOW, @DATE(93, 7, 22)) = 59691720
@DIFFTIME(@DATE(93, 7, 22), @NOW) = -59691720

SQL/R A.01.50

New Functions 29

2.4.4 @DAY, @MONTH, @YEAR, @QUARTER, @WEEKDAY

Activity
Determine the desired value from a given date-value.

Syntax
@DAY(Date)
@MONTH(Date)
@YEAR(Date)
@QUARTER(Date)
@WEEKDAY(Date)

Description
Each of these functions takes a date-value (the number of seconds since 01/01/1970)
as the actual parameter for the argument Date. The function @DAY computes the
number of days of the month, @MONTH computes the number of months of the year
and @YEAR the year from this date-value. The function @QUARTER computes the
number of corresponding quarter year, a value between and including 1 and 4. The
function @WEEKDAY determines the day of the week, with 0 as Sunday, 1 as Monday
etc. Its return value is therefore one of the numbers 0 to 6.

Return Value
Each function returns the value computed from the date-value.

Example

Let @NOW = 24.08.1993

Then the functions return the following results:

@DAY(@NOW) = 24
@MONTH(@NOW) = 8
@YEAR(@NOW) = 93
@QUARTER(@NOW) = 3
@WEEKDAY(@NOW) = 2 = Tuesday

SQL/R A.01.50

2.4 Date and Time Functions 30

2.4.5 @HOUR, @MINUTE, @SECOND

Activity
Compute the desired value from a given date- or time value.

Syntax
@HOUR(Date)
@MINUTE(Date)
@SECOND(Date)

Description
Each of these functions takes a date- or time-value (the number of seconds since
01/01/1970 or the number of seconds since midnight), as the actual parameter for the
argument Date. The function @HOUR computes the number of hours, @MINUTE the
number of minutes within the hour and @SECOND the number seconds within the
minute from the argument Date.
These functions also operate with time-value as argument. The working environment
can however lead to time differences depending on the local time zone.

Return Value
Each function delivers the value computed from argument Date.

Example

Let @NOW = 08/24/1993, 20:26:31

Then the functions return the following results:

@HOUR(@NOW) = 20
@MINUTE(@NOW) = 26
@SECOND(@NOW) = 31

2.4.6 @WEEKBEG, @MONTHBEG, @QUARTERBEG, @YEARBEG

Activity
Determine the required date-value from a given date argument.

Syntax
@WEEKBEG(Date)
@MONTHBEG(Date)
@QUARTERBEG(Date)
@YEARBEG(Date)

SQL/R A.01.50

New Functions 31

Description
Each of these functions takes a date-value (the number of seconds since 01/01/1970)
as the actual parameter for the argument Date. The function @WEEKBEG computes
the date-value of the first day in the week (Monday) from the given argument Date,
@MONTHBEG determines the corresponding first day of the month, @QUARTERBEG
determines the date-value for the first day of the quarter year and @YEARBEG deter-
mines the corresponding date-value for the first day of the year.

Return Value
Each of these functions computes the required date and returns the corresponding
date-value of type long.

Example

Let @NOW = 24.08.1993

SET DATE = "%d.%m.%y";
FIELD w_beg = @WEEKBEG(@NOW);
FIELD m_beg = @MONTHBEG(@NOW);
FIELD q_beg = @QUARTERBEG(@NOW);
FIELD y_beg = @YEARBEG(@NOW);

SELECT w_beg, m_beg, q_beg, y_beg;

Gives the following results:

W_BEG M_BEG Q_BEG Y_BEG
23.08.93 01.08.93 01.07.93 01.01.93

2.4.7 @WEEKS, @DAYS, @HOURS, @MINUTES, @SECONDS

Activity
Use a given number or expression to compute the corresponding number of seconds.

Syntax
@WEEKS(number)
@DAYS(number)
@HOURS(number)
@MINUTES(number)
@SECONDS(number)

SQL/R A.01.50

2.4 Date and Time Functions 32

Description
Dates and Times are processed internally as the number of seconds since 01/01/1970.
This is the standard date and time format for Unix. This format makes it just as easy
to calculate with dates and times as with any other numbers. All functions compute
the number of seconds from the product of the constants prescribed to the function
and the value that is given by the argument number.

The constants prescribed to each function are as in the following list:

Function Constant Factor
@SECONDS() 1 Second
@MINUTES() 60 Seconds (60 * 1)
@HOURS() 3600 Seconds (60 * 60)
@DAYS() 86400 Seconds (24 * 3600)
@WEEKS() 604800 Seconds (7 * 86400)

Return Value
The functions return the computed number of seconds.

Example

Let @NOW = 24.08.1993

SET DATE = "%d.%m.%y";
FIELD tomorrow = @NOW + DAYS(1);
FIELD two_weeks_ago = @NOW - @WEEKS(2);

SELECT tomorrow, two_weeks_ago;

Leads to the the following results:

TOMORROW TWO_WEEKS_AGO
25.08.93 10.08.93

SQL/R A.01.50

3
New SQL/R functionality

3.1 Comments

Two different styles of comment are possible with SQL/R. The first style is for a one line
comment while the second style changes a whole paragraph of your script into a comment.

3.1.1 Comment Line

Any line which begins with the hash character “#” is interpreted as a comment (which
SQL/R will ignore during execution).

For example:

Some comment
Instructions
...
More comments
Instructions
...

Incidentally, the hash character “#” has another, little-known use which can make your
SQL/R scripts executable without having to startsqlrexec first. In HP-UX, an executable
script whose first line begins with #! followed by the full pathname of another program,
will execute that program before proceeding to the second line. When such a script is to be
executed, the specified program is executed first, passing the file name and the argument to
the called program.

For example:

Place the following line first in an SQL/R script and make the script executable, and you
may start the SQL/R script like any shell script.

#!/usr/bin/sqlrexec -n

SQL/R A.01.50

3.1 Comments 34

Make it executable by the HP-UX command:

chmod +x xxx.sql

Starting this file with:

./xxx.sql

is equivalent to:

/usr/bin/sqlrexec -n ./xxx.sql

3.1.2 Comment Paragraph

All characters enclosed within braces (“f” and “g”) are interpreted as comments. This
makes it possible to declare a whole paragraph of the script as a comment.

However two limitations have to be noted when using braces:

� The last character of a line may not be a semicolon. This is a limitation of the current
syntax parser which considers each line with a trailing semicolon to be the last line
of an executable statement.

� If a comment paragraph follows an instruction, then it may not begin on the same line
as the semicolon that marks the end of the instruction. SQL/R interprets the end of
an instruction as the end of the line and ignores the rest of the line. In this case, the
opening brace marking the beginning of a comment paragraph will be ignored. That
will eventually lead to a syntax error because SQL/R will interpret your comment as
an instruction.

To improve human readability, we recommend that comment paragraphs (those enclosed by
braces) be given their own lines. Indent each comment line for an even better appearance.

For example:

Instructions

{
First line of comment text
...
Last line of comment text

}

Instructions

SQL/R A.01.50

New SQL/R functionality 35

3.2 Using Environment Variables

You may use environment variables in SQL/R scripts. An environment variable is recog-
nized through its name and the leading character “$”. This provides a powerful method of
using variable information (for example: a data base path) with a multiple use script file.
Using environment variables in your scripts may make it easier to reuse SQL/R scripts.
Please note the SQL/R scanner always treats environment variables as type string. You
may need to convert the value of an environment variable to a different data type within
your script.

Example

OPEN DATABASE "$HOME/db";

This instruction opens the data base "db", in the directory defined by the environment
variable HOME. For example HOME = /usr/sqlr.

The following instruction is a case where the data type must be converted in order to use
the environment variable.

Example

SELECT ... FROM ... WHERE comno = @VALUE($COMNO);

3.3 The Constant NULL

The constant NULL makes it possible to compare values against the NULL value. Where
NULL in this context does not mean zero value or an empty string but the fact that a field
value is undefined. In this case, the field always contains the value NULL.

Example

FIELD value = IF (field value = NULL, 0.0, field value);
...
SELECT ..., MAX(value), ...

All NULL values of field value are replaced by a zero value. (This is because arithmetic
operations return a NULL result if any of the input values have a NULL value.)

SQL/R A.01.50

3.4 The Constant @NOW 36

You may not compare a field against a NULL value in the WHERE condition of a SELECT
statement. (The internal algorithm which evaluates the WHERE condition will not allow it.)
Instead, you must use the clause IS [NOT] NULL to achieve your required result.

Example

SELECT MAX(field value) FROM ...
WHERE field value IS NOT NULL;

The following example does not work:

SELECT MAX(field value) FROM ...
WHERE field value <> NULL;

3.4 The Constant @NOW

The constant @NOW returns the date-value of the present date (and time) of day. Its return
value is of type long and is the number of seconds since 01/01/1970. You may use the
@NOW constant in your script to reference the date the script was run without having to
modify the script every time.

Example

SELECT ..., date, ... FROM ...
WHERE @YEARBEG(@NOW) <= date AND date <= @NOW;

This selects all records in which the field "date" occurs between Jan 1st of the current year
and the present date.

SQL/R A.01.50

New SQL/R functionality 37

3.5 New SET command clauses

3.5.1 SET ECHO

Syntax
SET ECHO = [ON | OFF]

Description
The instruction SET ECHO corresponds to the sqlrexec commandline option
“-e”.
When ECHO = ON is set, every SQL/R command is traced to stderr before it
is executed.

3.5.2 SET COLSEP

Syntax
SET COLSEP = "Character"

Description
The command SET COLSEP is used to define the character used by SQL/R to
separate individual columns in a result row. The blank (space) character is the default
column separator.
If output is redirected to an ASCII file (using the SET OUTPUT command), then
the column separator becomes the field separator instead of the default "," character.
Alternate definition of column or field separators may be needed when SQL/R
results will be imported by other applications which have limitations on their import
file formats.

3.5.3 SET ROWSEP

Syntax
SET ROWSEP = "Character"

description
The SET ROWSEP command defines which character will be used to separate in-
dividual result rows and BREAK result lines (please refer to REPORT SELECT ...
CALCULATE). The default separator character is a hyphen (“-”).
The definition of a line separator has no effect if the output is redirected to an ASCII
or a DIF file.

SQL/R A.01.50

3.5 New SET command clauses 38

3.5.4 SET NULL

Syntax
SET NULL = "String" | "Character"

Description
The command SET NULL defines how to output NULL values. If the argument is
a single character, it is repeated for the field width. The default output for a NULL
value is the character string "NULL".

The command SET NULL has no effect when output is directed to an ASCII or a
DIF file. In this case the zero value or an empty string is used, depending upon the
field data type.

Example

CREATE VIEW CustomerOrdersView PATH Customers
TO Orders WHERE Custno = Custno;

SELECT Orderno, Custno FROM CustomerOrdersView;

If there is no entry in the table Orders for a particular customer, all fields in the
view CustomerOrdersView which are defined by the table Orders (for example
Orders.Orderno) are undefined and will have the NULL value.

3.5.5 SET OVERFLOW

Syntax
SET OVERFLOW = "String" | "Character"

Description
The command SET OVERFLOW defines the output when a numeric value requires
more space (characters) than was defined for the particular column. This definition
only concerns output and does not affect the actual result.

If the argument is a single character, it is repeated for the field width. The default
output on an overflow condition is the asterisk (“*”) which repeats for the column
width.

The command SET OVERFLOW has no effect when output is directed to an ASCII
or DIF file.

SQL/R A.01.50

New SQL/R functionality 39

Example

SET OVERFLOW = "#";
FIELD val = 1234567890;
FIELD val1 = val DISPLAY AS LONG(10);
FIELD val2 = val DISPLAY AS LONG(6);

SELECT val, val1, val2;

This instruction results in:
VAL VAL1 VAL2

1234567890 1234567890 ######

This instruction results accordingly to:
SET OVERFLOW = "TOO SHORT";

VAL VAL1 VAL2
1234567890 1234567890 TOO SH

SQL/R A.01.50

4
Enhancement of SQL/R statements

4.1 The REPORT SELECT - statement

Syntax
REPORT

SELECT ...
USING LINEAR LIST;

Description
The REPORT SELECT statement was extended by the option USING LINEAR
LIST. Exactly one set of results is displayed on each page, when this rule is used,
whereby all column names and their corresponding result values are displayed to-
gether.

The use of this extension is especially recommended for the diagnosis of data base
and during the development phase of SQL/R scripts.

Example

OPEN DATABASE "/usr/sqlr/db/db";

REPORT
SELECT * FROM CUSTOMER

USING LINEAR LIST;

The following list of outputs results from this instruction, where such a page is generated
for each result row.

CUSTNO = "11006"
MATCHCODE = "ABB"
NAME1 = "ABB-Tecnoservice"
NAME2 = ""
NAME3 = "Postfach 605"
STREET = ""
ZIPCITY = "USA-LYONS, ILLINOIS 60534"

SQL/R A.01.50

Enhancement of SQL/R statements 41

PHONE = "KYLLBURG 065632019"
TURNOVER = 1457.67
SALESAREA = "U"

4.2 The FIELD - statement

Syntax
FIELD ... DISPLAY AS ...

[GROUP OPTION = fON | OFFg]
[CURRENCY OPTION = fON | OFFg]
[NULL = f"string" | "char"g]
[OVERFLOW = f"string" | "char"g]
[SUPPRESS REPEATING VALUES [UNTIL GROUP BREAK]]

Description
Extension Description
GROUP OPTION This option is only valid for numeric fields. If GROUP

OPTION = ON is set, then the output values are
grouped. The grouping character and its position de-
pends on the working environment (e.g "12.000,00"
(German locale) or "12,000.00" (American locale)).
The settingMONETARY defines the working environe-
ment for numbers of type MONEY while NUMERIC
defines the working environment for all other numeric
types.
GROUP OPTION = ON is the default setting for val-
ues of typeMONEY andGROUP OPTION = OFF is
the default setting for all other numeric field types.

CURRENCY OPTION This option is only valid for fields of type MONEY.
If CURRENCY OPTION = ON is set, then the
curency symbol is output along with the value. The
currency symbol and its positiondepends on the work-
ing environment. (e.g "1.000,00 DM" (German lo-
cale) or "$ 1,000.00" (American locale)). Both the
currency symbol and its formating are defined by
MONETARY.
The default setting is CURRENCY OPTION = OFF.

SQL/R A.01.50

4.2 The FIELD - statement 42

Extension Description
NULL This option defines how NULL values should be out-

put for this field.

OVERFLOW This option defines how a field overflow should be
indicated for this field. A field overflow occurs, if
the output of a numeric field contents requires more
space (in terms of characters) than is defined for this
particular field.

SUPPRESS ... This option makes it possible to suppress the output of
repeated values of a column so that blanks are given
as output instead of the repeated field content. The
normal output is continued when either the content of
the field changes or the rule UNTIL GROUP BREAK
os preset and a change of group is necessary. Such a
change of group can be forced using the instruction
CALCULATE ... BREAK (cf. chapter 6.18 pp.).

SQL/R A.01.50

Enhancement of SQL/R statements 43

Example
The following example shows some modifications which may be applied for the
example man34 of the SQL/R manual (please refer to chapter 5.3).

This modifications have the following effects:

� The repeated output of order numbers orderrnr and order status status is
suppressed.

� The total sum sum is always given at the output with grouping, and currency
symbol. In case a NULL value occurs, then the the text "N/A" is output. If the
predefined output field is too small, then the character "#" is the output.

� the text "N/A" is also printed if the fields qty and price are NULL.

FIELD orderno DISPLAY AS (10)
SUPPRESS REPEATING VALUES
UNTIL GROUP BREAK;

FIELD status = orderstat VALUES ARE ...
DISPLAY AS LEFT(18)
SUPPRESS REPEATING VALUES
UNTIL GROUP BREAK;

FIELD qty DISPLAY AS DOUBLE(6, 0)
NULL = "N/A";

FIELD price DISPLAY AS DOUBLE(8, 2)
NULL = "N/A";

FIELD amount = (qty * price / icnt)
DISPLAY AS MONEY(10, 2)
GROUP OPTION = ON
CURRENCY OPTION = ON
NULL = "N/A"
OVERFLOW = "#";

SQL/R A.01.50

4.3 The WHERE - Condition 44

4.3 The WHERE - Condition

Syntax
SELECT ... WHERE expression IS [NOT] NULL

Description
The result of CREATE VIEW statement is a logical view (table), of the database
consisting of a number of records linked through the corresponding fields and condi-
tions.

If an individual record does not satisfy the link condition (as specified with by
CREATE VIEW) its value will be NULL (undefined).

If the IS NULL or IS NOT NULL condition is present in the WHERE clause of a
select statement, it possible to select or exclude result rows having NULL values.

Please note that the use of the rule IS NULL slightly prolongs the execution time.

Example

CREATE VIEW tmp PATH customers
TO orders WHERE custno = customers.custno

SELECT custno
FROM tmp
WHERE orders.custno IS NULL;

This selects all customers who do not have a pending order.

...
WHERE orders.custno IS NOT NULL;

This selects all customer who have a pending order.

SQL/R A.01.50

Enhancement of SQL/R statements 45

4.4 The CREATE VIEW - statement

Syntax
CREATE VIEW view name PATH source

TO dest 1 WHERE dest 1:keywordfield = <expression 1>
AND dest 2 WHERE dest 2:keywordfield = <expression 2>

Description
TheWHERE clause of theCREATE VIEW statement was extended to make it possible
to specify an expression as the relating value. Up to SQL/R version A.01.31, it was
only possible to use a individual data fields for the definition of the desired relation.

Please note that a field from a table that is used as a link field must either be a search
item or must have an associated index.

Example
In the following example, for every record from table Parts, a suitable record from
the table text is located, where the field textnr must match the leading four
characters of the field parts.

CREATE VIEW tmp PATH parts
TO text WHERE text.textid = @LEFT(parts.partno, 4);

Alternatively, a FIELD statement can be used instead of the concrete expression in the
CREATE VIEW statement:

FIELD f textid = @LEFT(parts.partno, 4);

CREATE VIEW tmp PATH parts
TO text WHERE text.textid = f textid;

SQL/R A.01.50

A
Short Reference

A.1 SQL/R Commands

New entries are typeset in boldface.

CREATE VIEW view name PATH table spec path group�
DESCRIBE AS "description"

�
;

table spec =
�

table alias name =
�

table name

path group = TO path element [AND path element [AND . . .]] [TO . . .]

path element =
�

(path element path group)
table spec WHERE [table name.] field = expression

�

DEFINE ["]macro name["] AS "macro definition"�
DESCRIBE AS "description"

�
;

EXIT ;

FIELD

�
alias = expression
field name

�

�
VALUES ARE (

�
f"string" | numg =

�
"string" [, . . .])

�
2
4 DISPLAY AS

2
4
2
4 LEFT

CENTER
RIGHT

3
5 format

3
5 � fmt option . . .

�
3
5

�
DESCRIBE AS "description"

�
;

SQL/R A.01.50

Short Reference 47

format =

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(width)
(width, decimal places)
INT(width)
LONG(width)
FLOAT(width, decimal places)
DOUBLE(width, decimal places)
FIXED(width, decimal places)
MONEY(width [, decimal places])
DATE [("date format", width)]
TIME [(width)]

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

fmt option =

2
6666664

GROUP OPTION = fON | OFFg
CURRENCY OPTION = fON | OFFg
NULL = f"char" | "text"g
OVERFLOW = f"char" | "text"g
SUPPRESS REPEATING VALUES�

UNTIL GROUP BREAK
�

3
7777775

HELP

� �
identifier
"string"

� �
;

REPORT SELECT select stmt�
CALCULATE field calc [, . . .]

�
2
6666664

INTO

8>>>>>><
>>>>>>:

TERMINAL
PRINTER2
4 ASCII

EXPORT
DIF

3
5 FILE ["]filename["]

NULL

9>>>>>>=
>>>>>>;

3
7777775

2
4 report fmt

USING report form
USING LINEAR LIST

3
5 ;

SQL/R A.01.50

A.1 SQL/R Commands 48

field calc =

2
66664

8>>>><
>>>>:

SUM
AVG
MIN
MAX
COUNT

9>>>>=
>>>>;
(field ref [, . . .]) ["row label"]

3
77775

BREAK ON

�
(field ref [, . . .])
REPORT

� �
SKIP [n]
PAGE [n]

�

report fmt =
�
TITLE AS "report title"

�
�
DATE AS f TODAY | "date string" g

�
�
LENGTH = num

�
�
WIDTH = num

�

�
RUN

�
file name [("arg" [, "arg"] . . .)] ;

SELECT
�
ALL | DISTINCT

�
f* | expression ["alternate heading"] [, . . .] g
�
FROM view name

�
�
WHERE cond expression

�
�
GROUP BY field ref [, . . .] [HAVING cond expression]

�
�
ORDER BY field ref [ASC | DESC] [, field ref [ASC | DESC]] . . .

�
;

SET LOCALE "category=language[@modifier]" ;

category =

8>>>>>><
>>>>>>:

ALL
COLLATE
CTYPE
MONETARY
NUMERIC
TIME

9>>>>>>=
>>>>>>;

SQL/R A.01.50

Short Reference 49

SET OUTPUT =

8>>>>>><
>>>>>>:

TERMINAL
PRINTER2
4 ASCII

EXPORT
DIF

3
5 FILE ["]filename["]

NULL

9>>>>>>=
>>>>>>;
;

SET

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

DATE = "date fmt"
ECHO = [ON | OFF]
COLSEP = "char"
LENGTH = lines
NULL = ["char" | "string"]
OVERFOW = ["char" | "string"]
PRINTER = "device"
PROMPT = "prompt string"
ROWSEP = "char"
WIDTH = columns

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

;

SHOW

8>>>>>>>>>>>><
>>>>>>>>>>>>:

DATE
FIELD f * | field name g
LENGTH
LOCALE
MACRO f * | "macro name" g
OUTPUT
PRINTER
VIEW f * | view name g
WIDTH

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

;

SQL/R A.01.50

A.2 Constants 50

A.2 Constants

Constant Meaning
NULL represents a non defined empty field
@date represents the date-value that corresponds to the argument date
@time represents the time-value that corresponds to the argument time
@NOW represents the date-value of the actual day

A.3 Functions

The arguments of all the listed functions can be constants, individual fields or formulas as
well as expressions.

Function Nname (Argument) Function Name (Argument)
@ABS (number) @NUM (string)
@CHAR (number) @POS (string1, string2)
@DATE (year, month, day) @QUARTER (date)
@DATETOCHAR (date, format) @QUARTERBEG (date)
@DATEVALUE (date) @RIGHT (string, length)
@DAY (date) @ROUND (number, precision)
@DAYS (number) @RPT (string, count)
@DIFFTIME (date1, date2) @SECOND (date)
@DIV (number, divisor) @SECONDS (number)
@FRACT (number) @STRING (format, number)
@HOUR (date) @SUBSTR (string, start, length)
@HOURS (number) @TIME (hour, minute, second)
@INT (number) @TIMEVALUE (string)
@LEFT (string, length) @TRIM (string)
@LENGTH (string) @UPPER (string)
@LOWER (string) @VALUE (string)
@MINUTE (date) @WEEKBEG (date)
@MINUTES (number) @WEEKDAY (date)
@MOD (number, divisor) @WEEKS (number)
@MONTH (date) @YEAR (date)
@MONTHBEG (date) @YEARBEG (date)

SQL/R A.01.50

B
Character Set Mapping

Like HP Eloquence, SQL/R uses the Roman8 character set internally. It is however
possible to map data to a terminal dependent character set in the SQL/R editor and by using
the program tmap.

B.1 How does this work ?

Using the environment variableTERM, a file with the extension.map and which corresponds
to the terminal type is searched for in the directory /usr/sqlr/map. If this file is found,
the character set is modified according to the definition in the file.

If the environment variable SQLR MAP is defined, then the directory specified by the
SQLR MAP is searched instead.

For example:

If the environment variable TERM has the value 70060, then the file
/usr/sqlr/map/70060.map is used to map the character set.

B.2 SQL/R Editor

The SQL/R editor automatically uses the procedure described above to map all inputs and
outputs to the terminal character set. If sqlrexec is started from the editor, then its
terminal output is mapped as well.

Note
If files are created using any other editor than the SQL/R editor on a terminal
which does not have the Roman8 character set and national characters (e.g. umlaut
vowels) are used, then the file must be translated to the Roman8 character set. This
may be done by using iconv that is part of HP-UX. Please refer to iconv(1) for
details.

SQL/R A.01.50

B.3 tmap 52

B.3 tmap

tmap is an utility program that is available with SQL/R to map the character set during
terminal output. It also uses the procedure described above to carry out the mapping.

Usage:

/usr/sqlr/tmap [file]

The source of data can either be the standard input (stdin) or a file.

For example:

/usr/sqlr/tmap README

Displays the file README in the terminal character set.

/usr/bin/sqlrexec -tn xxx.sql | /usr/sqlr/tmap

Converts the output of sqlrexec into the character set of the used terminal. (The argument
-t must be given in order to keep the prompt during the page break).

B.4 iconv

The HP-UX program iconv can be used to translate files from one character set to another.

For example:

iconv -f roman8 -t iso8859_1 README

Translates the file README from the Roman8 character set to the ISO 8859/1 character
set during the output. The output is displayed on the stdout.

Further information on iconv(1) can be obtained using

man 1 iconv

SQL/R A.01.50

Character Set Mapping 53

B.5 sqlrexec

The output from sqlrexec is in Roman8 character set. If the output is to a device with
a different character set, then the character set must be mapped accordingly, (for example
using iconv or tmap).

For example

sqlrexec -tn xxx.sql | /usr/sqlr/tmap

Converts the output of sqlrexec into the character set of the used terminal. (The argument
-t must be given in order to keep the prompt during the page break).

sqlrexec -n xxx.sql | tr -d "\014" |
iconv -f roman8 -t iso8859_1 | more

Converts the output of sqlrexec from Roman8 into the ISO 8859/1 character set. The
output is piped through more. (The page break is removed here using the tr command).

B.6 Supporting Other Terminal Names

In order to support terminal devices using the ISO 8859/1 character set, link the file
iso8859 1.map to the terminal dependent mapping filename.

For example:

cd /usr/sqlr/map
ln iso8859_1.map hp70060.map

SQL/R A.01.50

C
Using the terminal printer (lprint)

C.1 Using lprint

This is a description of lprint in the version of 06/23/93. lprint makes it possible to
print to a local printer (attached to your terminal). It works similar as the HP Eloquence
PRINTER IS 10 statement.

Usage:

lprint [-r] [file]

You may either specify a filename to lprint or pass the data into stdin. The -r flag specifies
raw printing mode. Normally lprint will expand a newline character (\n) into a \r\n
sequence. You may suppress this behaviour by giving the -r option.

For example:

ll | lprint
lprint -r sample.DATA

C.2 How to configure lprint to different terminals

Terminal control is terminal type dependent. Normally, all required control sequences
should be defined properly by the HP Eloquence terminfo descriptions.

1. lprint uses the TERM environment variable to identify the terminal type. A
corresponding (compiled) terminfo description is required.

� If the TERMINFO environment variable is undefined:
The following directories are searched for a terminfo description (in this order):

/usr/eloquence/terminfo
/usr/lib/terminfo

SQL/R A.01.50

Using the terminal printer (lprint) 55

� If the TERMINFO environment variable is defined (eg. /usr/uap/terminfo):
The directories defined by the TERMINFO variable are searched first (eg.
/usr/uap/terminfo). If no terminfo description could be found, the following
directories are searched for a terminfo description:

/usr/eloquence/terminfo
/usr/lib/terminfo

2. If the LONG terminal name starts with “hp ”, hp terminal printer protocol (S/U/F
response after output) will be assumed, else no protocol will be assumed.

For example:

70092|70092a|70092A|hp 7009x/239x series,
ÃÃÃ
This is a HP Terminal

70060|70060 Terminal(vt320; 7 bit),
ÃÃÃ
This is no HP Terminal

c1003|c1003a|1003|1003a|700-41,
ÃÃÃ
This is no HP Terminal

3. lprint needs the following control sequence(s) (from terminfo) to activate the
printer:

Either

prtr_non (activate printer for n characters)

or

prtr_on (activate printer)
prtr_off (switch printer off)

The following keywords are used in the terminfo description:

Name Keyword 700/92 vt320 c1003

prtr_non mc5p mc5p=\E&p%p1%dW

prtr_on mc5 mc5=\E&p13C mc5=\E[5i mc5=ÃR
prtr_off mc4 mc4=\E&p11C mc4=\E[4i mc4=ÃT

SQL/R A.01.50

Index

.profile, 2–4
/etc/PATH, 4
/etc/profile, 2, 3
/opt/sqlr/etc/chklic, 1
/opt/sqlr/newconfig/ReleaseNotes, 1, 6
/tmp/update.log, 3
@ABS, 9, 23
@CHAR, 9, 11
@DATE, 10, 27
@DATETOCHAR, 9–11
@DATEVALUE, 9, 10, 12
@DAY, 10, 29
@DAYS, 10, 31
@DIFFTIME, 10, 28
@DIV, 9, 23, 24
@FRACT, 9, 24
@HOUR, 10, 30
@HOURS, 10, 31
@INT, 9, 25
@LEFT, 9, 19
@LENGTH, 9, 20
@LOWER, 9, 20
@MINUTE, 10, 30
@MINUTES, 10, 31
@MOD, 9, 25
@MONTH, 10, 29
@MONTHBEG, 10, 30, 31
@NOW, 10, 36
@NUM, 9, 13
@POS, 9, 21
@QUARTER, 10, 29
@QUARTERBEG, 10, 30, 31
@RIGHT, 9, 19
@ROUND, 9, 26
@RPT, 9, 22
@SECOND, 10, 30
@SECONDS, 10, 31
@STRING, 9, 14

@SUBSTR, 9, 19
@TIME, 10, 27
@TIMEVALUE, 9, 10, 17
@TRIM, 9, 22
@UPPER, 9, 20
@VALUE, 9, 18
@WEEKBEG, 10, 30, 31
@WEEKDAY, 10, 29
@WEEKS, 10, 31
@YEAR, 10, 29
@YEARBEG, 10, 30, 31

C
CALCULATE ... BREAK, 42
Character Set, 51
chklic, 1
CREATE VIEW, 44, 45
CURRENCY OPTION, 41

D
DISPLAY AS DATE, 27
DISPLAY AS TIME, 27

E
Editor, 51

F
FIELD, 41
FIELD ... DISPLAY AS, 23

G
GROUP OPTION, 41

I
iconv, 52
Installation, 1
IS [NOT] NULL, 36, 44
IS NOT NULL, 44
IS NULL, 44
ISO 8859/1, 53

SQL/R A.01.50

INDEX 57

iso8859 1.map, 53

L
lprint, 54

M
MONETARY, 41
MONEY, 41

N
NULL, 19, 35, 41
NUMERIC, 41

O
OVERFLOW, 41

R
REPORT SELECT, 40
Roman8, 51

S
SELECT, 36
SET COLSEP, 37
SET ECHO, 37
SET NULL, 38
SET OUTPUT, 37
SET OVERFLOW, 38
SET ROWSEP, 37
sqlrexec, 53
SUPPRESS REPEATING VALUES, 41

T
TERM, 51
tmap, 51, 52

U
UNTIL GROUP BREAK, 42
USING LINEAR LIST, 40

W
WHERE, 36, 44, 45

SQL/R A.01.50

