SOL/R

Report Generator
for HP ELOQUENCE

Supplement to Revision A.01.50

mse

The information contained in this document is subject to change without notice.

Marxmeier Softwareentwicklung (mse) makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Marxmeier Softwareentwicklung shal not be liable for
errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

Published Editions:
A.01.00 - 1992
A.01.36 - July 1995,Supplement
A.01.50 - August 1996, Supplement

(© 1992-1996 Marxmeier Software Entwicklung GmbH Wuppertal, Germany.

Thisdocument containsinformationwhichisprotected by copyright. All rightsarereserved.
Reproduction, adaption or transl ation without prior written permissionis prohibited, except
under the copyright laws.

Restricted Rights Legend. Use, duplication or disclosure by the U.S. Government De-
partment of Defense is subject to restrictions as set forth in subparagraph (c) (2) (ii) of the
Rightsin Technical Dataand Computer Software clause in DFARS 252.227-7013. Rights
for non-DOD Government Departments and Agencies are set as forth in the Commercial
Computer Software Restricted Rights clause, FAR 52.227-19 (c) (1,2).

HP ELOQUENCE is a protected trademark of Hewlett-Packard GmbH.
HP-UX isaprotected trademark of Hewlett-Packard Inc.

Preface

This supplement to the SQL /R manual contains a complete description of additional func-
tionality that has been implemented into SQL /R since the publication of the manual.

This supplement is on the SQL/R release A.01.36. HP-UX release 9.x isa prerequisite to
thisversion.

In order to use SQL /R withHP-UX 10.x, you need SQL /R release A.01.40 or above, which
will bereleased in August 1995.

Topics
Chapter 1 Installation

This chapter describes the new instal lation procedure.
Chapter 2 New Functions

New string, date, time and arithmetic functions.
Chapter 3 New Commands

New SQL /R languange commands.
Chapter 4 Command Enhancements

Extensionsto SQL/R commands.

Appendix A Up-dated short reference of the SQL/R languange

Short reference of the SQL /R language, including new and extended com-
mands and functions.

Appendix B Mapping of Character Sets
Mapping SQL/R and terminal character sets.

Appendix C Using Terminal Printers
Output of files or datato thetermina printer using | pri nt .

SQL/R A.01.50

Preface

Typographical Conventions

Unless otherweise noted, this manua uses the following symbolic conventions:

Comput er Font

L)

(G Henar)

italics

[]

{1

SQL/R A.01.50

Computer font indicates commands, keywords, options, literals,
source codes, system outputs and path names.

The symbol [Jindicates a key on a computer keyboard or an
area or “button” on screen that can be activated by your mouse. For

example, indicates the Control key and isan on

screen button.

The symbol CTRL{ char] indicates a control character. For exam-
ple (CTRL { Y] means you have to simultaneous press the Control
key and the Y key on the keyboard.

Within syntax statements, aword in italics represents a formal pa
rameter or argument that you have to replace with an actua value.
In thefollowing exampl e, you must substitute filename by the name
of thefileto be printed:

| p filename
Within syntax statements, brackets enclose optional elements. In

the following example, brackets around [- ddev] indicate that the
parameter and its delimiter are optional:

| p[-ddev] filename
Within syntax statements, braces indicate that you must choose one
of the listed items. In the following example, the braces around

{-c| - x| - v} indicate, that you must choose one othe the argu-
ments:

tar {-c|-x|-v}

Preface iv

Additional Reading

The following additiona documentation isreferred to in thismanual:

SQL/R Manual
The SQL/R manua contains a detailed description of the SQL/R syntax and com-
mands.

HP-UX (online) Documentation

Referencesof theformser vi ces(4) refer tothegiventopicoritem (hereser vi ces)
contained in the indicated section (here 4) of the HP-UX-reference manual. Itisalso
possible to obtain this documentation on-line using the command nman, whereby in
the case of ser vi ces(4) the user should enter the foll owing statement:

man 4 services

SQL/R A.01.50

Contents

1 Installation 1
11 Instdlationoverview 2
12 Insdlationon HP-UX 9x 3
13 Insdlationon HP-UX 10.x 4
14 DedetetheoldSQL/Rverson, 5
15 TheSQL/Rlicensekey 5
1.6 Additiond information 6
1.7 Newoproductstructure. 6

2 New Functions 9
21 Conversionof DaaTypes. v v v v i i i e e e 11

211 @CHAR . . . e 11
212 @DATETOCHAR e 11
213 @DATEVALUE 12
214 @NUM . . . 13
215 @STRING 14
216 @TIMEVALUE i 17
217 @VALUE. e 18
2.2 Manipulationof Character Strings 19
221 @LEFT, @RIGHT, @SUBSTR 19
222 @LENGTH 20
223 @LOWER, @QUPPER 20
224 @POS 21
225 @RPT . . . e 22

SQL/R A.01.50

Contents Vi

226 @TRIM 22

23 NumericRunctions 23
231 @ABS 23
232 @DIV 23
233 @FRACT e 24
234 @INT . . . 25
235 @MOD 25
236 @ROUND i 26

24 DaeandTimeFunctions 27
241 @DATE 27
242 @TIME e 27
243 @DIFFTIME 28
244 @DAY, @MONTH, @YEAR, @QQUARTER, @WEEKDAY 29
245 @HOUR, @MINUTE, @SECOND 30
246 @WEEKBEG, @MONTHBEG, @QUARTERBEG, @YEARBEG 30
247 @WEEKS, @DAYS, @HOURS, @MINUTES, @SECONDS . . . 31

3 New SQL/R functionality 33
31 CommentS. 33
311 CommentLine 33

312 CommentParagraph 34

3.2 UsingEnvironmentVariables 35
33 TheConstantNULL 35
34 TheConstant @NOW 36
35 NewSETcommandclauses 37
351 SETECHO 37
352 SETCOLSEP it 37

SQL/R A.01.50

Contents vii

353 SETROWSEP i 37

354 SETNULL 38

355 SETOVERFLOW 38

4 Enhancement of SQL/R statements 40
41 TheREPORT SELECT -dtatement 40
42 TheFIELD-gatement 41
43 TheWHERE-Condition 44
44 TheCREATEVIEW -datement 45

A Short Reference 46
Al SOQL/RCommands i i e 46
A2 Congtants 50
A3 Functions 50

B Character Set Mapping 51
B.1 Howdoesthiswork? 51
B.2 SQL/REGItOr . . o v o v e e e e e e 51
B3 thmap 52
B4 iCONV. . . . 52
B5 sOlrexec 53
B.6 SupportingOther Terminal Names 53

C Usingtheterminal printer (Iprint) 54
C.1l Usinglprint e 54
C.2 How toconfigurelprintto differentterminals 54

SQL/R A.01.50

1

Installation

The ingtallation procedure has been changed for the SQL/R product starting with release
A.01.40. The installation procedure as described in the printed manua no longer applies.
The new installation procedure is described in this document for HP-UX 9.x and HP-UX
10.x.

Magjor changes of SQL/R release A.01.50 include:

e SQL/R A.01.50 can only beinstalled an run on the HP-UX operating system release
9.x or later.

¢ SQL/R nolonger needsits own instalation or updatetools, asitisnow installed and
updated by the usua operatin system tools.

e SQL/R usesanew licence scheme. Instead of “branding” the executable fileswith a
systemid, alicencefilenamed | i cence isnow present at

HP-UX 10.x /etc/opt/sglr

HP-UX 9.x /opt/sqlr/etc
The licence file is a plain text file which contains al licences which apply to the
SQL/R product. The/ opt/sql r/ etc/ chkl i c utility may be used to check th
licencefile.

e SQL/R A.01.50 has adifferent file structure than recent SQL /R releases in order to
be HP-UX 10.x compliant. This new file structure is aso provided on HP-UX 9.x.

o Optiona products are no longer installed seperately. All files related to the SQL/R
product will be installed automatically. This includes SQL/R Windows Client and
SQL/R ODBC. Please note, that you need an apropriate licence entry in the license
filein order to use optional extensions.

Pleaserefer to/ opt / sql r/ newconfi g/ Rel easeNot es for more details.

SQL/R A.01.50

1.1 Installation overview

1.1 Installation overview

Inorder touse SQL/R, you need alicensekey. You should either have received atemporary
license key along with the SQL /R software, or you can request your license key from your
distributor or Marxmeier Software Entwicklung GmbH using the included fax form.

If thisis an update, please check that SQL/R is not currently active. If you have SQL/R
Windows Client or QUERY ODBC, please check that the daemons are no longer active.

Please note: You need about 10 MBytes of available disc space for ingtalationin thefile
system, which contain/ t mp and the/ opt directories.

If thisisan update of SQL/R from arevision before A.01.40, you may want to delete old
softwarewhich islocated at / usr/ sql r . This must be performed manualy.

Please check for references to the former SQL/R location in your PATH variable. You
might want to check / et ¢/ profi | e and. profi | e intheusers homedirectories.

If thisisanew installation or an updateto a SQL /R version before A.01.40, you must add
your license key to the licensefile.

SQL/R A.01.50

Installation

1.2

Installation on HP-UX 9.x

As “superuser”, follow the steps bel ow.

1.
2.

Login as root

Insert the SQL/R DDS tape into your tape drive and extract the software from tape
to temporary location.

cd /tmp
tar xv /dev/rmt/0Om SQLR.updt

where /dev/rmt/Omisyour DDS tape device file.

. Toingtall SQL/R run “update (1m)” by typing:

/etc/update

o Select “Change Source or Destination ->".

e Select “From Tape Device to Loca Sytem..”.

e Tabtothe“Source’ field and enter the following commands:
/tmp/SQLR.updt

o PressF4 Done.
o Sdlect “Select/View Partitionsand Filesets...”.

o Activatethe“SQL/R" partitionand additional either the“ SQLR-E” (for English
localisation) or the“SQLR-E” (for German localisation) partition.

o Select F4 “Start Loading”
o Type“Y” to start “Start loading filesets now?’.

. Check / t np/ updat e. | og to make sure installation completed with no error.

. You may want to include SQL/R in your PATH. To archieve this for al users, you

may edit the/ et ¢/ pr ofi | e. Append thefollowingline
PATH=$PATH:/opt/sqlr/bin

To include SQL/R in the path of an individua user, you may add the line to the
. profi | e inthe homedirectory.

. Add thelicense key to thefilel i cence.

SQL/R A.01.50

1.3 Installation on HP-UX 10.x

1.3 Installation on HP-UX 10.x

As “superuser”, follow the steps below to install the SQL /R software:

1. Loginasroot

2. Insert the SQL/R DDS tape into your tape drive and extract the software from tape
to temporary location.

cd /tmp
tar xv /dev/rmt/0Om SQLR.updt

where /dev/rmt/Omisyour DDS tape device file.
3. Toinstall SQL/R run“swingtal” by typing:

/usr/sbin/swinstall -s /tmp/SQLR.sd

where /tmp/SQLR.sd is the path to the file extracted from the DDS tape.

¢ Inthe Software Selection Window, highlight to select the “SQL/R-E” product
(for Englisch locdisation) or the“ SQLR-G” product (for German localisation).

e Then coosethe“mark for instal” item from the ActionsMenu. The“Marked?”’
columnwill be automatically be set to “ Yes'.

o Sdectthe“Ingadl (analysis...)” itemfromtheActionsMenu. Whentheanaysis
isfinishedwith no error, (St at us: Ready, click O.K.

¢ Click YESin the Confirmation window to begin the actual installation.

4. When theinstalationiscompleted, adialogisdisplayed to notify you that theinstall
task is completed. You may exit then.

5. You may want to include SQL/R in your PATH. To archieve this for al users, you
may edit thefile/ et ¢/ PATH. Append the following:

:/opt/sqlr/bin

To include SQL/R in the path of an individual user, you may add the line below to
the. prof i | e inthe homedirectory:

PATH=$PATH:/opt/sqlr/bin

6. Addthelicense key tothefilel i cence.

SQL/R A.01.50

Installation

1.4 Delete the old SQL/R version

If thisisan update of SQL/R from arevision before A.01.40, you may want to delete old
softwarewhich islocated at / usr/ sql r . This must be performed manualy.

Warning: The procedure below will remove al filesstored inthetreeunder/ usr/ sql r!
If you installed your own files you should move them to a save location first.

Deleting the old SQL /R software may acomplished by the following commands:

1. Loginasroot.

2. Changeintothe directory /usr
cd /usr

3. Remove thedirectory sql r
rm-rf sqlr

4. Changeinto the directory /usr/bin:
cd /usr/bin

5. Remove thefollowingfiles:
rmsqlr sqglred sqlrexec

6. Changeinto thedirectory /usr/lib/nls:
cd /usr/lib/nls

7. Remove the old message files of SQL/R:

rm/C/ sqlr.cat
rm/german/sqlr. cat

1.5 The SQL/R license key

Inorder touse SQL /R, you need alicensekey. You should either have received atemporary
license key along with the SQL /R software, or you can request your license key from your
distributor or Marxmeier Software Entwicklung GmbH using the included fax form.

To ingtall the ODBC license key, perform the following steps:

SQL/R A.01.50

1.6 Additional information

1. Loginasroot.
2. Add the license key to your license file using your favorite editor program. The
location of the license file depends on the revision of the HP-UX operating system:

HP-UX9x /opt/sqlr/etc/licence
HP-UX 10.x /etc/opt/sqglr/licence

You can usethe/ opt / sql r/ et ¢/ chkl i c utility program to check your license
file

Please note: The license key must by typed exactly as on the license sheet.

1.6 Additional information

Please refer to directory / opt / sqgl r/ newconf i g/ Rel easeNot es, for further docu-
mentation about fixed problems or enhancement documentation.

Directory / opt / sql r/ newconf i g/ Rel easeNot es containsthe followingfiles:

README.g Release Notes in German language

README.e Release Notes in English language

README.srv SQL/R Windows Client Server Side Release Notes
README.odbc SQL/R ODBC Server Side Release Notes

INSTALL How toinstal or update SQL/R
A.01.35 SQL/R A.01.35 release notes
A.01.40 SQL/R A.01.40 release notes
A.01.41 SQL/R A.01.41 release notes
A.01.42 SQL/R A.01.42 release notes
A.01.50 SQL/R A.01.50 release notes

Fileswiththeextention“g” arein german language, fileswith extention“ €’ oreno extention
arein english language.

1.7 New product structure

With the release of HP-UX 10.0, Hewlett Packard has introduced a new file system layout
paradigm, modelled after SVR4 and OSF. The model provides many benefits, such as
separating the operati on system from appli cations ans aligning HP with anindustry-accepted
file system layout. SQL/R since release A.01.40 follows the HP-UX 10.0 file system
conventions and provides asimilar file structure with HP-UX 9.x and HP-UX 10.x.

SQL/R A.01.50

Installation

/opt/sqlr/ Base directory

-- etc/ Utility programs
HP-UX 9.x: Application specific
configuration files

--- bin/ Executable programs
--- Tib/ Libraries
I—— nls/
[-- ¢/ Default message catalog

|-- german/ German message catalog

--- newconfig/

-- ReleaseNotes/ Release Notes
-- etc/ Example licence file
-- startup/ HP-UX 10.0 startup/shutdown scripts
--- share/
--- map/ Character set mappings
--- sample/ Example scripts (from manual)
Linked to a language dependend directory
--- sample.e/ - English example scripts
--- sample.g/ - German example scripts
--- db/ Example database
Linked to a language dependend directory
--- db.e/ - English example database
--- db.g/ - German example database
--- example/ Example programs

The following directories are only present with HP-UX 10.x:

/etc/opt/sqlr/ Application specific
configuration files

SQL/R A.01.50

1.7 New product structure

/var/opt/sqlr/

/etc/rc.config.d/
/sbin/
|

init.d/

| -

|

| --- rcl.d/
| --- rc2.d/

SQL/R A.01.50

Application specific temporary
files

Startup configuration files

Startup and shutdown scripts

Startup and shutdown 1link files
for script sequencing

2

New Functions

This chapter covers adetail ed description of new SQL /R functions. Some functionshaving
related or similar activities are described together as "Family".

Every entry consists of the following parts:

o ashort description of the function
o syntax definition showing how to use the function
o adetailed description of the activity of the function
o returnvaueif any
o example showing how to use the function
Functions are used to modify existing fields or define new fields and expressions. Because

of this, al functions begin with the character “@” in order to avoid possible conflicts with
existing field names.

Functionsfall into the following categories:
e Conversion of datatypes

This functionsconvert datafrom one datatypeto the other. For example, strings can
be converted into numeric values or date formats and vice versa.

@CHAR @N\UM @/ALUE
@ATETCOCHAR @TRI NG
@ATEVALUE @rl MEVALUE
e Manipulation of Character Strings
@QEFT @cs @UBSTR
@.ENGTH @Rl GHT @R'M
@Q.ONER @RPT @JPPER
e numeric Functions
@\BS @RACT @D
@il v @ NT @ROUND

SQL/R A.01.50

New Functions

10

e Dateand TimeFunctions

@ATE @1 NUTE @ECONDS
@ATETCOCHAR @1 NUTES @ar Ve
@ATEVALUE @VONTH @l MEVALUE
@AY @/ONTHBEG @N\EEKBEG
@AYS @low @\EEKDAY
@Il FFTI ME @UARTER @N\EEKS
@HOUR @UARTERBEG @'EAR
@HOURS @ECOND @/EARBEG

Some of the functions given here are part of SQL/R (cf. chapters 6.7 pp.), though without
theleading “ @ character. Because of compatibility, the old versions of such functionsare
till supported. For the sake of uniformity they should however no longer be used in new
scripts.

SQL/R A.01.50

New Functions 11

2.1 Conversion of Data Types

2.1.1 @CHAR

Activity
Conversion of a numeric value into a character
Syntax
@CHAR(val ue)
Description
@CHAR returns the character that corresponds to the argument value.

To obtain ameaningful result, the value should be in the range of 0 and 255. In cases
where valueisnot in thisinterva, the value will be ANDed bitwisewith 255, so that
the function always returns a corresponding character.

Return Value
The function returns the character corresponding to the argument value.

Example

@CHAR(49) and @CHAR(-207) return both "1"
@CHAR(65) and @CHAR(321) return both "A"

2.1.2 @DATETOCHAR

Activity

Conversion of adate-vaueinto a string.
Syntax

@DATETCCHAR(Date, Fornmat)
Description

@ATETCOCHAR converts the date-val ue given by the argument Dateinto astring and
returnsthis. The format for the string output is described in the argument Format. A
list of permitted formatsis given in appendix B of the SQL/R manual. The resulting
string depends on your working environment (NUMERI C).

Return Value

The generated string is returned.

SQL/R A.01.50

2.1 Conversion of Data Types

12

Example

The constant @NOWused in the example bel ow is the date-val ue of the current day (today).
It isexplained later in thismanual. The following results are obtained in accordance with
the given formats.

@DATETOCHAR(@NOW, "%c") returns:
"Mon May 22 1995, 17:58:29"

@DATETOCHAR(@NOW, "Today is the %d.%m.%y") returns:
"Today is the 22.05.95"

2.1.3 @DATEVALUE

Activity

Convertsa string or string expression into a date-val ue.
Syntax

@ATEVALUE(String)
Description

@ATEVALUE convertsthe string given by theargument Sringinto theinternal date

format (the number of seconds since 01/01/1970). For alist of the supported date

formats, please refer tothe example below. Please notethat constant date-values (e.g.

"@01/01/95") do not have to be converted since thisisdone internaly by SQL/R.
Return Value

The function returns the corresponding date-value. The return value is NULL if
Sring does not define a correct date (e.g "Today isthe 07/22/93").

Example
The following cals of the @)ATEVALUE function al return the date-value 743292000:

@DATEVALUE("07/22/93")
@DATEVALUE("22.07.93")
@DATEVALUE("930722")

SQL/R A.01.50

New Functions

13

The example below retrieves all records that have a transaction date between 01/01/95 and
today’s date.

SELECT ... WHERE @DATEVALUE("01/01/95") <= trdate <= @NOW;

Thesameingtructionussng BETWEEN ... AND ... wouldresultinan error message
since theresults of afunctionis not considered a constant value.

2.14 @NUM

Activity
Returns the numeric va ue corresponding to the ASCII code of thefirst character of
the string argument.

Syntax
@NUM String)

Description
@\UMreturns the numeric value of the first character of the string indicated by the
argument Sring. Thiscan beanormal text aswell asastring consisting of individual
characters. Please notethat the backdlash character ("\) withinastring is a control
character which removes the special meaning of the following character. Therefore,
"\ " isasyntax error, because the second "will be treated as a printabl e character, not
as the end of the quoted string. (see Example)

Return Value
The function returns the determined value (code).

Example
@NUM("A") returns the value 65
@NUM("\ A") returns the value 65
@NUM("Example™) returns the value 66
@NUM(C ™™) Wrong
@NUM("™\) 0K
@NUM(""") Wrong
@NUM("™\ "") 0K
@NUM(C *™*) Correct and simpler

SQL/R A.01.50

2.1 Conversion of Data Types

2.1.5 @STRING

Activity

Conversion of anumeric vaueinto a string.
Syntax

@TRI NG format, nunber)
Description

@BTRI NG converts number into a string. The output format is defined by the
argument format. The result depends on the working environment (NUMERI C).

The argument format is astring that has the following syntax:

% [Flags] [Wdth] [.Precision] Type

Compoment Meaning

% Each conversion specification is introduced by the
character %. If it is not present, then the rest of the
instruction isinterpreted as anormal text.

[Fl ags] Zero or more flags, which modify the meaning of the
conversion specification.
[W dt h] An optional string of decimal digitsto specify amin-

imum field width in bytes. If the converted vaue has
fewer charactersthan thefield width, it isbe padded to
thefield width (according to Flags). If thefield width
is preceded by a zero, the string is right adjusted with
zero-padding on the left

[. Precision] The precision gives the number of digits to appear
after the radix character for the "f" conversion and
the maximum number of significant digitsfor the"g"
conversion. The precision takes the form of a period
followed by a decimal digit string; a null digit string
istreated as zero.

[Type] A conversion character that indicates the type of con-
version to be applied. Thisisthelast character of the
formating instruction. If it is missing, then the func-
tion returns awrong result. The only permitted types
are"f" and"g".

SQL/R A.01.50

New Functions

15

[Flags]

Meaning

negative sign
(-)

Positive sign
(+)

Enpty space ()

Hash sign (#)

Left justified output, in which blanks are added if nec-
essary. The default setup gives right justified output
with leading zeros or blanks.

Alwaysincludeasign character. By default, theoutput
hasasign only if it is a negative numeric value.

Positive values begin with blanks and negative values
with negative signs.

Always include a decimal point in the output. Ad-
ditionaly, if the output is of the type g, then trailing
zeros are not suppressed.

[Width] Meaning

n Output of at least n characters. The output is right
justified by default, so leading blanks are added if
necessary. If theFl ag - (left justify) isgiven, trail-
ing spaces are appended instead.

On Output at least n characters. Leading zeros are added

SQL/R A.01.50

if necessary.

2.1 Conversion of Data Types

Type [.Precision] Meaning

f The argument is converted to decimal notation in the
style [-]dddrddd, where r is the radix character. The
number of digitsafter theradix character isequal tothe
precision specification. Thelast digitisdetermined by
rounding if necessary.

none If the precisionis missing, six digitsare output.

.0or. If the precision is explicitly zero, no radix character
appears. The output contains only the whole number
part without a decimal point and decimal places.

.n The output has n decimal places.

g The argument is converted to decimal notation in the
style [-]dddrddd, or [-]drddde[+/-]dd where r is the
radix character and eistheexponent. Precision speci-
fiesthenumber of significant digits. Trailing zerosare
removed from the fractiona part of the result; a radix
character appearsonly if itisfollowed by adigit. The
last digit is determined by rounding if necessary.

none If the precisionismissing, up to six significant decimal
digitsare outpuit.

.0or. The output is formatted in exponentia form.

.n Theoutput hasupto n significant digits. If nissmaller

than the number of digits beforethe decimal, then the
result is formatted in exponentia form.

Whilethetypef specifies the number of decimal places, the output format g specifies
the number of significant digits.

Return Value
The function returns the generated string.

Example

SET LOCALE "NUMERIC=C";
@STRING("%06.3g", 1.2345) returns "001.23"

SET LOCALE "NUMERIC=german";

SQL/R A.01.50

New Functions

17

@STRING("%06.3f™, 1.2345) returns "01,235"

1
@STRING("%06.3g", 1.2345) returns "001,23"
@STRING("%+6.3f"™, 1.2345) returns "+1,235"
@STRING("%+6.3g™, 1.2345) returns " +1,23"
@STRING("%-6.3f", 1.2345) returns "1,235 "
@STRING("%-6.3g", 1.2345) returns "1,23 "

2.1.6 @TIMEVALUE

Activity

Convertsa string value into atime-value
Syntax

@ MEVALUE(String)

Description
@'l MEVALUE convertsthestring given by theargument Sringinto thecorresponding
time-value, i.e the number of seconds since midnight. For alist of supported time
formats, please refer to the examples below. Please note that constant time-values
(eg. "@12:30:15") do not have to be converted explecitly since the conversion is
doneby SQL/R internally.

Return Value

The function returns the corresponding time-value. The return value is NULL if
Sring does not define a correct time (for example "It is now 15:10:20").

Example
Both thefollowing calls of @'l MEVALUE return thevalue 54302:

@TIMEVALUE("15:05:02")
@TIMEVALUE("150502")

The cdlsof @'l MEVALUE without the value for the seconds given in the argument return
the corresponding value 54300:

@TIMEVALUE("15:05")
@TIMEVALUE("1505")

SQL/R A.01.50

2.1 Conversion of Data Types 18

2.1.7 @VALUE

Activity

Conversion of astring or string expression into a number.
Syntax

@QALUE(String)
Description

@/ALUE converts the string given by the argument Sring into the corresponding
numeric value. The decimal point can be either a"." or acharacter that is defined by
the working environment (NUMERI C).

Please note that the conversion always stopps as soon as an invaid character is
encountered in the string.

Return Value

The function returns the numeric value which isaways of type double. Thisistrue
even when the value is an integer number.

Example
SET LOCALE "NUMERIC=C";

@VALUE("12.34") returns 12.34
@VALUE(C "12,34") returns 12.00

In the second case, the comma (*,") is not permitted and the conversion is stopped.

SET LOCALE "NUMERIC=german";
@VALUE("12.34") returns 12,34
@VALUE(C "12,34") returns 12,34

Please be aware that the return valueis of typedoubl e.

FIELD xx = IF (..., @VALUEC "100"), 10);

Thisinstruction returns an error message because of different datatypes on possiblevalues
returned of the |l F. The right formulation of thisinstructionisas follows

FIELD xx = IF (..., @ALUE(C "100"), 10.0);

By specifying adecima point, the constant "10" is explicitly recognized as a value of type
doubl e.

SQL/R A.01.50

New Functions

2.2 Manipulation of Character Strings

2.2.1 @LEFT, @RIGHT, @SUBSTR

Activity
This function can be used to extract and copy parts of existing strings.

Syntax
@QEFT(String, nunber)
@RI GHT(String, nunber)
@UBSTR(String, Start, nunber)

Description
The functions @.EFT, @Rl GHT and @BUBSTR each exracts number characters from
a string defined by the argument Sring and returnsiit.
If number islonger than the length of the string designated by String then the whole
string is returned without filling the remaining character positionswith spaces.
The difference between the three functionsis the position where each of them starts
extracting the required character string. The function @QLEFT extract the required
characters from the beginning of the string, @RI GHT from the end and @UBSTR
starts its extraction from the position given by the argument Start, whereby the first
character in the string has position 0.

Return Value

The function delivers the extracted string character. It returns NULL if either the
argument number or Sart or both have invalid values (e.g smaller than 0).

Example
@LEFT("1234567890", 5) returns "12345"
@LEFT("123", 5) returns "123"

@RIGHT("1234567890™, 5) returns "67890"
@RIGHT(™123", 5) returns "123"

@SUBSTR(™1234567890™, 4, 3) returns "b567"
@SUBSTR("1234567890™, 7, 5) returns "890"

SQL/R A.01.50

2.2 Manipulation of Character Strings

20

2.2.2 @LENGTH

Activity
Determines the length of a string.
Syntax
@QENGTH(String)
Description
The function @Q.ENGTH determines the number of characters (Iength) of the string
indicated by the argument String.
Return Value
The function returns the determined length.

Example

@LENGTH("1234567890") returns the number 10

2.2.3 @LOWER, @UPPER

Activity
Conversion of lower case to upper case (small | ettersto capital | etters) and upper case
to lower case characters respectively.
Syntax
@QONER(String)
@JPPER(String)
Description

The function @. OVER converts the characters contained in the argument String to
capital letters, while the function @QJPPER does the opposite, i.e converts capital
letters contained in Sring to small letters.

The conversion depends on the selected working environment (LANG and CTYPE).
Thisisimportant, if European letters (likea, 6, U, A, O, U) are being converted.

Return Value
The function returns the converted string of characters.

SQL/R A.01.50

New Functions 21

Example

@UPPER("test") returns "TEST"
@LOWER("TEST") returns "test"

SET LOCALE "CTYPE=C"; -
SELECT @UPPER("&3iB"), @LOWER("AGUB");

gives the following output: "&suB AQUB"

SET LOCALE "CTYPE=german"; .
SELECT @UPPER("&GiB™), @LOWER("ADUB");

gives the following output: "AOUB &&iB"

2.2.4 @POS

Activity

Searches for the occurrence of a string within another string.
Syntax

@0s(Stringl, String2)
Description

The function @GS returnsthe position of thefirst occurrence of the string indicated
by the argument Sring2 in the string given by the argument Stringl.

Return Value
The function returns the position of the beginning of Sring2. If Sring2 is not

contained in Sringl then the return valueisO.

Example

@POS("1234512345", "34"™) returns position 3
@PQOS("1234512345", "XX") returns the value 0

SQL/R A.01.50

2.2 Manipulation of Character Strings 22

225 @RPT
Activity
Constructs a new string by repeatedly appending a given string.
Syntax
@RPT(String, nunber)
Descripion

The function @RPT returns a string val ue constructed by appending the string argu-
ment String number times.
Return Value

Thefunctionreturnseither the constructed string or NULL if theval ue of theargument
number is not permitted.

Example
@RPT("ABC™, 3) returns the string "ABCABCABC"
@RPT(C "-", 10) returns the string "---------- "
@RPT("ABC", 0) returns an empty string ""
@RPT("ABC", -1) returns NULL

22.6 @TRIM

Activity
Deletes leading and trailing spaces from a string.

Syntax
@R M String)

Description
The function @RI Mdeletes al the leading and trailing spaces from the character
string Sring.

Return Value
The function returns the modified string.

Example

@TRIM(C " ABC ") returns "A B C"

SQL/R A.01.50

New Functions 23

2.3 Numeric Functions

23.1 @ABS

Activity

Determines the absol ute value of a number.
Syntax

@\BS(nunber)

Description
The function @GABS computes the absol uteval ue of the number given by theargument
number. The return type is double, so @A\BS will inherit the default output format
of the double format having two decima places. The output will be rounded if
necessary. TheFl ELD ... DI SPLAY AS statement may be used to specify a
different output format.

Return Value
The function returns the absolute value of the given number. The return type is

double.
Example
FIELD vl = -1.236;
FIELD v2 = @ABS(vl);
FIELD v3 = vZ2 * 100.0;
FIELD v4 = @ABS(v1) DISPLAY AS DOUBLE(8,4);

SELECT v1, v2, v3, v4;

this instruction returns the following result:

V1 V2 V3 V4
-1,236 1,24 123,6 1,2360
2.3.2 @DIv
Activity
Determines thewhol e number part of theresult of thedivision of anumber by another
number.
Syntax

@l V(nunber, Divisor)

SQL/R A.01.50

2.3 Numeric Functions

24

Description
Thefunction @l V dividesthe number given by the argument number by the Divisor
and returnsthe whole number part of the quotient.

Return Value

The function returns the whole number portion of the quotient. The data type of the
result isthe same as that of the argument number.

Example

@DIV(20, 3) returns the wvalue 6 of type int
@DIV(20.0, 3) returns the value 6.00 of type double

2.3.3 @FRACT

Activity

Computes the difference of a number from the next smaller whole number.
Syntax

@RACT(nunber)

Description

The function @RACT determines the difference between the number given by the
argument number and the next whole number smaller than number. Please note that
if number isnegative, then the result obtained from this function differs from that of
HP Eloquence.

Return Value
The function returns the computed difference, which is always positive.

Example
@FRACT(1.48) returns 1.48 - 1.00 = 0.48
@FRACT(1.78) returns 1.78 - 1.00 =10.78
@FRACT(-1.48) returns -1.48 - (-2.00) = 0.52
@FRACT(-1.78) returns -1.78 - (-2.00) = 0.22

SQL/R A.01.50

New Functions 25

234 @INT

Activity
Returnsthe largest integer not greater than number.
Syntax
@ NT(nunber)
Desciption
The function @ NT returnsthe largest integer not greater than number.

Return Value
The function returns determined val ue.

Example

@INT(1.48) returns 1.00, @INT(-1.48) returns -2.00
@INT(1.78) returns 1.00, @INT(-1.78) returns -2.00

2.3.5 @MOD
Activity
Determines the remainder from the division of two numbers.
Syntax
@O nunber, Divisor)
Description

The function @JOD divides the number given by the argument number by Divisor
and returnstheremainder. Theremainder isdefined as (number - Divisor * quotient),
where the quotient is a whole number. Please note that if number and Divisor are
negative, thentheresult obtai ned from thisfunction differsfrom that of HP Eloquence.

Return Value

The function returns the remainder from the division. The data type of the return
value depends on the type of the argument humber and on the computed value. If
number isof typei nt and theremainder isawholenumber, then theresult isof type
i nt otherweiseitisof typedoubl e.

SQL/R A.01.50

2.3 Numeric Functions

Example
@M0D(20 , 3.5) returns 2.5 of type double
@M0D(-20 , 3) returns -2 of type int
@M0D(20., -3) returns 2.0 of type double
@M0D(-20., -3.5) returns -2.5 of type double

2.3.6 @ROUND

Activity

Rounds a number to a given accuracy
Syntax

@ROUND(nunber, accuracy)
Description

The function @ROUND rounds the number given by the argument number according
to the accuracy prescribed by the argument accuracy. Accuracy is specified in the
means of power of ten. So an accuracy vaue of -2 would specify an accuracy of
10~2 or two decimal places.

Return Value
The function returns the rounded number, which is always of typedoubl e.

Example

@ROUND(1.494, 0) is
@ROUND(-1.494, 0) is -
@ROUND(1.494, -2) is
@ROUND(-1.495, -2) is -
@ROUND(4.995, 1) is
@ROUND(-4.995, 1) is

.00, @ROUNDC 1.5, 0) is 2.00

.00, @ROUND(C -1.5, 0) is -2.00

.49, @ROUNDC 1.5, -1) is 1.50

.50, @ROUND(C -1.5, -1) is ~-1.50

.00, @ROUNDC 5.0, 1) is 10.00
0,

.00, @ROUND(-5. 1) is -10.00

OO ===

SQL/R A.01.50

New Functions

27

2.4 Date and Time Functions

2.4.1 @DATE
Activity
Computes the date from the given values of the year, month and day.
Syntax
@ATE(year, nonth, day)
Description

The function @ATE uses the arguments year, month and day to determine a corre-
sponding date-value (i.e the number of seconds since 01/01/1970). The DI SPLAY
AS DATE rule may be used to specify the output format.

Return Value
The function returns the computed date-value of typel ong.

Example

FIELD f_date = @DATE(95, 5, 20)
DISPLAY AS DATE("%d.%m.%y");
SELECT f_date, @DATE(95, 5, 20), @20.05.95;

Both instructions return the following result:

F_DATE @DATE(95,5,20) 20.05.95
20.05.95 800920800 800920800
242 @TIME
Activity
Computes the time-val ue from val ues given for hour, minute and second.
Syntax
@l Me(hour, mnute, second)
Description

The function @'l ME uses the arguments hour, minute and second to determine a
corresponding time-val ue (i.ethe number of seconds since midnight). TheDl SPLAY
AS TI ME rule may be used to specify the output format.

SQL/R A.01.50

2.4 Date and Time Functions 28

Return Value
The function returns the computed time-value.

Example

FIELD f_time = @TIME(15, 02, 02) DISPLAY AS TIME(8);
SELECT f_time, @TIME(C 15, 05, 02), @15:05:02, @150502;

Both instructions return the following result:

F_TIME @TIME(15,05,02) 15:05:02 150502
15:02:02 54302 54302 54302

2.4.3 @DIFFTIME

Activity

Determines the difference between two time-va ues in seconds
Syntax

@l FFTI ME(datel, date2)
Description

The function @I FFTI ME computes the number of seconds between the two dates
Datel and Date2.

Return Value

The function returns the computed difference, where thisisnegative if Date2 islater
than Datel.

Example

Date 1 = @NOW = 802983720
Date 2 = @DATE(93, 7, 22) = 743292000

The call of @DIFFTIME with these arguments returns
the following result:
@DIFFTIME(@NOW, @DATE(93, 7, 22)) = 59691720
@DIFFTIME(@DATE(93, 7, 22), @NOW) = -59691720

SQL/R A.01.50

New Functions 29

2.4.4 @DAY, @MONTH, @YEAR, @QUARTER, @WEEKDAY

Activity
Determine the desired value from a given date-value.

Syntax
@DAY(Date)
@/ONTH(Date)
@'EAR(Date)
@RUARTER(Date)
@\EEKDAY(Date)

Description
Each of these functionstakes a date-val ue (the number of seconds since 01/01/1970)
as the actual parameter for the argument Date. The function @AY computes the
number of days of the month, @VONTH computes the number of months of the year
and @YEAR the year from this date-value. The function @UARTER computes the
number of corresponding quarter year, a value between and including 1 and 4. The
function @\EEKDAY determinesthe day of theweek, with 0 as Sunday, 1 as Monday
etc. Itsreturn value istherefore one of the numbers 0 to 6.

Return Value

Each function returns the value computed from the date-value.

Example

Let @NOW = 24.08.1993

Then the functions return the following results:

@DAY (@NOW) = 24
@MONTH(@NOW) = 8
@YEAR(@NOW) = 93
@QUARTER(@NOW) = 3
@WEEKDAY(@NOW) = 2 = Tuesday

SQL/R A.01.50

2.4 Date and Time Functions 30

2.45 @HOUR, @MINUTE, @SECOND

Activity
Compute the desired value from a given date- or time value.

Syntax
@HOUR(Date)
@/ NUTE(Date)
@SECOND(Date)

Description
Each of these functions takes a date- or time-value (the number of seconds since
01/01/1970 or the number of seconds since midnight), as the actual parameter for the
argument Date. The function @HOUR computes the number of hours, @1 NUTE the
number of minutes within the hour and @SECOND the number seconds within the
minute from the argument Date.
These functionsal so operate with time-val ue as argument. The working environment
can however |ead to time differences depending on the local time zone.

Return Value
Each function delivers the value computed from argument Date.

Example

Let @NOW = 08/24/1993, 20:26:31
Then the functions return the following results:

@HOUR(@NOW) =
@MINUTEC @NOW) = 26
@SECOND(@NOW) =

2.46 @QWEEKBEG, @MONTHBEG, @QUARTERBEG, @YEARBEG

Activity
Determine the required date-value from a given date argument.
Syntax

@\EEKBEG(Date)

@/ONTHBEG(Date)
@UARTERBEG Date)
@EARBEG(Date)

SQL/R A.01.50

New Functions 31

Description

Each of these functionstakes a date-val ue (the number of seconds since 01/01/1970)
as the actual parameter for the argument Date. The function @GNEEKBEG computes
the date-value of thefirst day in the week (Monday) from the given argument Date,
@VONTHBEG determines the corresponding first day of the month, @QUARTERBEG
determines the date-value for thefirst day of the quarter year and @QYEARBEGdeter-
mines the corresponding date-value for the first day of the year.

Return Value

Each of these functions computes the required date and returns the corresponding
date-value of typel ong.

Example

Let @NOW = 24.08.1993

SET DATE = "%d.%m.%y";

FIELD w_beg = @WEEKBEG(@NOW) ;
FIELD m_beg = @MONTHBEG(@NOW) ;
FIELD gq_beg = @QUARTERBEG(@NOW);
FIELD y_beg = @YEARBEG(@NOW) ;

SELECT w_beg, m_beg, q_beg, y_beg;
Gives the following results:

W_BEG M_BEG 0_BEG Y_BEG
23.08.93 01.08.93 01.07.93 01.01.93

2.47 @WEEKS, @DAYS, @HOURS, @MINUTES, @SECONDS

Activity

Use agiven number or expression to compute the corresponding number of seconds.
Syntax

@\EEKS(nunber)

@AYS(number)

@HOURS(nunber)
@ NUTES(nunber)
@ECONDS(nunber)

SQL/R A.01.50

2.4 Date and Time Functions 32

Description

Dates and Times are processed internally as the number of seconds since 01/01/1970.
Thisisthe standard date and time format for Unix. Thisformat makesit just as easy
to calculate with dates and times as with any other numbers. All functions compute
the number of seconds from the product of the constants prescribed to the function
and the value that is given by the argument number.

The constants prescribed to each function are asin the following list:

Function Constant Factor
@SECONDS() 1 Second
@MINUTES() 60 Seconds (60* 1)
@HOURS() 3600 Seconds (60 * 60)
@DAY S() 86400 Seconds (24 * 3600)

@WEEKS() 604800 Seconds (7 * 86400)
Return Value
The functions return the computed number of seconds.

Example

Let @NOW

24.08.1993

SET DATE = "%d.%m.%y";
FIELD tomorrow
FIELD two_weeks_ago

NOW + DAYS(1);
NOW - @WEEKS(2);

=@
=@
SELECT tomorrow, two_weeks_ago;

Leads to the the following results:

TOMORROW TWO_WEEKS_AGO
25.08.93 10.08.93

SQL/R A.01.50

New SQL/R functionality

3.1 Comments

Two different styles of comment are possible with SQL/R. The first styleisfor aoneline
comment whilethe second style changes awhol e paragraph of your script into a comment.

3.1.1 Comment Line

Any line which begins with the hash character “#" is interpreted as a comment (which
SQL /R will ignore during execution).

For example:

Some comment
Instructions

More comments
Instructions

Incidentally, the hash character “#’ has another, little-known use which can make your
SQL /R scriptsexecutablewithout havingto start sql r exec first. InHP-UX, an executable
script whose first line begins with #! followed by the full pathname of another program,
will execute that program before proceeding to the second line. When such ascript isto be
executed, the specified program is executed first, passing the file name and the argument to
the called program.

For example:

Place the following linefirst in an SQL/R script and make the script executable, and you
may start the SQL /R script like any shell script.

#1/usr/bin/sqlrexec -n

SQL/R A.01.50

3.1 Comments

34

Make it executable by the HP-UX command:
chnod +x xxx. sql

Starting thisfile with:

. xxx. sql

isequivalent to:

/usr/bin/sqlrexec -n ./xxx.sql

3.1.2 Comment Paragraph
All characters enclosed within braces (*{" and “}”) are interpreted as comments. This
makes it possibleto declare awhol e paragraph of the script as a comment.
However two limitations have to be noted when using braces:
e Thelast character of alinemay not beasemicolon. Thisisalimitation of the current

syntax parser which considers each line with atrailing semicolon to be the last line
of an executable statement.

o |If acomment paragraph followsan instruction, then it may not begin onthesameline
as the semicolon that marks the end of the instruction. SQL/R interprets the end of
an ingtruction as the end of the line and ignoresthe rest of theline. In thiscase, the
opening brace marking the beginning of a comment paragraph will beignored. That
will eventudly lead to a syntax error because SQL /R will interpret your comment as
an ingtruction.

To improve human readability, we recommend that comment paragraphs (those enclosed by
braces) be given their own lines. Indent each comment line for an even better appearance.

For example:

Instructions

First 1ine of comment text

Last Tine of comment text

}

Instructions

SQL/R A.01.50

New SQL/R functionality

35

3.2 Using Environment Variables

You may use environment variables in SQL/R scripts. An environment variable is recog-
nized through its name and the leading character “$". This provides a powerful method of
using variable information (for example: a data base path) with a multiple use script file.
Using environment variables in your scripts may make it easier to reuse SQL/R scripts.
Please note the SQL/R scanner aways treats environment variables as type string. You
may heed to convert the value of an environment variable to a different data type within
your script.

Example

OPEN DATABASE "$HOME/db";

This instruction opens the data base "db", in the directory defined by the environment
variable HOVE. For example HOVE = /usr/sqlr.

The following instruction is a case where the data type must be converted in order to use
the environment variable.

Example

SELECT ... FROM ... WHERE comno = @VALUE($COMNO);

3.3 The Constant NULL

The constant NULL makes it possible to compare vaues against the NULL value. Where
NULL in this context does not mean zero value or an empty string but the fact that a field
value isundefined. Inthiscase, thefield always contains the value NULL.

Example

FIELD value = IF (field value = NULL, 0.0, field value);

SELECT ..., MAX(value),

All NULL vaues of field val ue arereplaced by a zero value. (Thisis because arithmetic
operations return aNULL result if any of theinput values have aNULL vaue))

SQL/R A.01.50

3.4 The Constant @NOW

36

You may not compare afield against a NULL value in the WHERE condition of a SELECT
statement. (Theinternal agorithm which eval uates the WHERE conditionwill not alow it.)
Instead, you must usetheclause| S [NOT] NULL to achieve your required result.

Example

SELECT MAX(field value) FROM ...
WHERE field value IS NOT NULL;

The following exampl e does not work:

SELECT MAX(field value) FROM ...
WHERE field value <> NULL;

3.4 The Constant @NOW

The constant @NOWreturns the date-value of the present date (and time) of day. Its return
valueis of type |l ong and is the number of seconds since 01/01/1970. You may use the
@\OWconstant in your script to reference the date the script was run without having to
modify the script every time.

Example

SELECT ..., date, ... FROM ...
WHERE @YEARBEG(@NOW) <= date AND date <= @NOW;

This selects all records in which the field "date" occurs between Jan 1st of the current year
and the present date.

SQL/R A.01.50

New SQL/R functionality

3.5 New SET command clauses

3.5.1 SETECHO

Syntax
SET ECHO = [ON | OFF]

Description
The ingtruction SET ECHO corresponds to the sql r exec commandline option
‘g
When ECHO = ON isset, every SQL/R command istraced to st der r beforeit
is executed.

3.5.2 SET COLSEP

Syntax
SET COLSEP = "Character"”

Description

The command SET COLSEP is used to define the character used by SQL/R to
separate individual columnsinaresult row. The blank (space) character isthe default
column separator.

If output is redirected to an ASCI | file (using the SET OUTPUT command), then
the column separator becomes the field separator instead of the default "," character.
Alternate definition of column or field separators may be needed when SQL/R
results will be imported by other applications which have limitationson their import
file formats.

3.5.3 SET ROWSEP

Syntax
SET ROABEP = "Character"”

description
The SET ROWSEP command defines which character will be used to separate in-
dividua result rows and BREAK result lines (please refer to REPORT SELECT ...
CALCULATE). The default separator character isahyphen (“-").
The definition of aline separator has no effect if the output isredirected to an ASCI |
oraDl Ffile

SQL/R A.01.50

3.5 New SET command clauses 38

3.5.4 SET NULL

Syntax
SET NULL = "String" | "Character"

Description
The command SET NULL defines how to output NULL values. If the argument is
asingle character, it is repeated for the field width. The default output for aNULL
value isthe character string "NULL".
The command SET NULL has no effect when output is directed to an ASClI | or a
DI Ffile. In this case the zero value or an empty string is used, depending upon the
field datatype.

Example

CREATE VIEW CustomerOrdersView PATH Customers
TO Orders WHERE Custno = Custno;
SELECT Orderno, Custno FROM CustomerOrdersView;

If there is no entry in the table Or der s for a particular customer, al fidds in the
view Cust orrer Or der sVi ew which are defined by the table Or der s (for example
Orders.Orderno) are undefined and will have the NULL value.

3.5.5 SET OVERFLOW

Syntax
SET OVERFLOW = "String" | "Character™

Description
The command SET OVERFL OWdefines the output when a numeric value requires
more space (characters) than was defined for the particular column. This definition
only concerns output and does not affect the actua result.
If the argument is a single character, it is repeated for the field width. The default
output on an overflow condition is the asterisk (“*") which repeats for the column
width.
The command SET OVERFLOWhas no effect when output is directed to an ASCI |
or DI Ffile.

SQL/R A.01.50

New SQL/R functionality

Example
SET OVERFLOW = "#";
FIELD val = 1234567890;
FIELD vall = val DISPLAY AS LONG(10);
FIELD val2 = val DISPLAY AS LONG(6);

SELECT val, vall, valZ2;
This instruction results in:
VAL VALL VAL2
1234567890 1234567890 {HHHHH}

This instruction results accordingly to:
SET OVERFLOW = "TOO SHORT";

VAL VAL1 VAL2
1234567890 1234567890 T00 SH

SQL/R A.01.50

Enhancement of SQL/R statements

4.1 The REPORT SELECT - statement

Syntax
REPORT
SELECT ...
USI NG LI NEAR LI ST;

Description

The REPORT SELECT statement was extended by the option USI NG LI NEAR
LI ST. Exactly one set of resultsis displayed on each page, when thisruleis used,
whereby al column names and their corresponding result values are displayed to-
gether.

The use of thisextension is especialy recommended for the diagnosis of data base
and during the devel opment phase of SQL/R scripts.

Example

OPEN DATABASE "/usr/sqlr/db/db";

REPORT
SELECT * FROM CUSTOMER
USING LINEAR LIST;

The following list of outputs results from this instruction, where such a page is generated
for each result row.

CUSTNO = "11006"

MATCHCODE = "ABB"

NAME1 = "ABB-Tecnoservice"

NAME2 ="

NAME3 = "Postfach 605"

STREET ="

ZIPCITY = "USA-LYONS, ILLINOIS 60534"

SQL/R A.01.50

Enhancement of SQL/R statements

41

PHONE
TURNOVER
SALESAREA

IIUII

"KYLLBURG 065632019"
1457.67

4.2 The FIELD - statement

Syntax
FIELD ... DISPLAY AS ...
[GROUP OPTION = {ON | OFF}]
[CURRENCY OPTION = {ON | OFF}]
[NULL = {"string" | "char"}]
[OVERFLOW = {"string" | "char"}]
[SUPPRESS REPEATI NG VALUES [UNTI L GROUP BREAK]]
Description
Extension Description

GROUP OPTI ON

CURRENCY OPTI ON

SQL/R A.01.50

Thisoptionisonly valid for numericfields. If GROUP
OPTI ON = ON is s, then the output vaues are
grouped. The grouping character and its position de-
pends on the working environment (e.g "12.000,00"
(German locale) or "12,000.00" (American locae)).
The setting MONETARY definesthe working environe-
ment for numbers of type MONEY while NUMVERI C
defines theworking environment for all other numeric
types.

GROUP OPTI ON = ONisthedefault setting for val-
uesof type MONEY and GROUP OPTI ON = OFF is
the default setting for all other numeric field types.

This option is only valid for fields of type MONEY.
If CURRENCY OPTION = ON is s, then the
curency symbol is output along with the value. The
currency symbol and itsposition depends on thework-
ing environment. (e.g "1.000,00 DM" (German lo-
cae) or "$ 1,000.00" (American locale)). Both the
currency symbol and its formating are defined by
MONETARY.

Thedefault settingis CURRENCY OPTI ON = OFF.

4.2 The FIELD - statement

42

Extension

Description

NULL

OVERFLOW

SUPPRESS . . .

SQL/R A.01.50

This option defines how NULL values should be out-
put for thisfield.

This option defines how a field overflow should be
indicated for this field. A field overflow occurs, if
the output of a numeric field contents requires more
space (in terms of characters) than is defined for this
particular field.

Thisoptionmakesit possibleto suppressthe output of
repeated values of a column so that blanks are given
as output instead of the repeated field content. The
normal output is continued when either the content of
thefield changes or therule UNTI L GROUP BREAK
os preset and a change of group is necessary. Such a
change of group can be forced using the instruction
CALCULATE ... BREAK(cf. chapter 6.18 pp.).

Enhancement of SQL/R statements 43

Example

The following example shows some modifications which may be applied for the
example man34 of the SQL/R manual (please refer to chapter 5.3).

This modifications have the following effects:

o Therepeated output of order numbersor der r nr and order statusst at us is
suppressed.

e Thetotal sum sumis aways given at the output with grouping, and currency
symbol. In case aNULL vaue occurs, then the the text "N/A" isoutput. If the
predefined output field istoo small, then the character "#" isthe output.

o thetext "N/A" isalso printed if thefieldsqt y and pri ce are NULL.

FIELD orderno DISPLAY AS (10)
SUPPRESS REPEATING VALUES
UNTIL GROUP BREAK;

FIELD status = orderstat VALUES ARE ...
DISPLAY AS LEFT(18)
SUPPRESS REPEATING VALUES
UNTIL GROUP BREAK;

FIELD qty DISPLAY AS DOUBLE(6, 0)
NULL = "N/A";

FIELD price DISPLAY AS DOUBLE(8, 2)
NULL = "N/A";

FIELD amount = (gqty * price / icnt)
DISPLAY AS MONEY(10, 2)
GROUP OPTION = ON
CURRENCY OPTION = ON
NULL = "N/A"
OVERFLOW = "#";

SQL/R A.01.50

4.3 The WHERE - Condition 44

4.3 The WHERE - Condition

Syntax
SELECT ... VWHERE expression |'S [NOT] NULL
Description

The result of CREATE VI EWstatement is a logica view (table), of the database
consisting of anumber of records linked through the corresponding fields and condi-
tions.

If an individua record does not satisfy the link condition (as specified with by
CREATE VI EW itsvalue will be NULL (undefined).

If thel S NULL or | S NOT NULL condition is present in the WHERE clause of a
select statement, it possibleto select or exclude result rows having NULL values.

Please note that the use of therulel S NULL dlightly prolongsthe execution time.

Example

CREATE VIEW tmp PATH customers
TO orders WHERE custno = customers.custno

SELECT custno
FROM tmp
WHERE orders.custno IS NULL;

This selects al customers who do not have a pending order.

WHERE orders.custno IS NOT NULL;

This selects al customer who have a pending order.

SQL/R A.01.50

Enhancement of SQL/R statements 45

4.4 The CREATE VIEW - statement

Syntax

CREATE VI EW view_name PATH source
TO dest_.1 WHERE dest_1.keywordfield = <expressi on_1>
AND dest 2 WHERE dest_2.keywordfield = <expr essi on2>

Description

The WHERE clause of the CREATE VI EWstatement wasextended to makeit possible
to specify an expression as therelating value. Up to SQL/R version A.01.31, it was
only possibleto use aindividua datafields for the definition of the desired relation.

Please note that afield from atable that isused as alink field must either be a search
item or must have an associated index.
Example

In the following example, for every record fromtablePar t s, a suitablerecord from
the table t ext is located, where the field t ext nr must match the leading four
characters of thefield part s.

CREATE VIEW tmp PATH parts
TO text WHERE text.textid = @LEFT(parts.partno, 4);

Alternatively, a FIELD statement can be used instead of the concrete expression in the
CREATE VI EWstatement:

FIELD f_textid = @LEFT(parts.partno, 4);

CREATE VIEW tmp PATH parts
TO text WHERE text.textid = f_textid;

SQL/R A.01.50

Short Reference

A.1 SQL/R Commands
New entries are typeset in boldface.
CREATE VI EWWiew_name PATHtable_spec path_group

[DESCRI BE AS “description” | ;

table_spec = table.dias.name=] table_.name

path_group =TOpath_element [AND path_element [AND...]] [TO...]

_ | (path_element path_group)
path-element = { table_spec WHERE [table_name.] field = expression

DEFI NE ["]macro_name["] AS "macro definition”
[DESCRI BE AS “description” | ;

EXIT ;

FI ELD { alias = expression }

field_name

[VALUES ARE ([{"string” |num} = | "string"[,...])]

LEFT
DI SPLAY AS CENTER | format [fmt_option ...]
Rl GHT

[DESCRI BE AS “description” | ;

SQL/R A.01.50

Short Reference

a7

(width)

(width, decimal places)

| NT(width)

LONG(width)

_ FLOAT(width, decimal places)
format = DOUBLE(widith, decimal places)
FI XED(width, decimal places)
MONEY(width[, decima places])
DATE[("date_format", width)]
TI ME[(width)]

[GROUP OPTION = {ON| OFF}
CURRENCY OPTION = {ON| OFF}
fmt option = NULL = {"char" | "text"}
OVERFLOW = {"char" | "text"}
SUPPRESS REPEATING VALUES
[UNTIL GROUP BREAK]

HELP[{ E‘dentifi:er }] ;
string

REPORT SELECT sdlect_stmt
[CALCULATE field_calc|, ...]]

i TERM NAL
PRI NTER
ASCl |
I NTO EXPORT | FI LE ["]filenamd]"]
DI F
I NULL
[report_fmit
USI NGreport_form ;
| USING LINEARLIST

SQL/R A.01.50

A.1 SQL/R Commands

SUM
AVG
field_calc = MN b (fieldref[,...]) ["rowlabel’]
MAX
COUNT
(fieldref[,...]1) | [SKIP[n]
BREAK ON{ REPORT } [PAGE [n]]

report_fmt = [TI TLE AS"reporttitle’ |

[DATE AS { TODAY |"datestring" }]
[LENGTH=num |

[WDTH=num |

[RUN | filename[("arg" [,"arg"]...) 1;

SELECT [ALL|DI STINCT]
{* | expression ["dternate_heading”] [, ...] }
[FROMview_name]
VHERE cond_expression |

[
[GROUP BY field_ref [,...] [HAVI NGcond_expression] |
[

ORDER BY field_ref [ASC | DESC] [, field_ref [ASC | DESC]] . . .

SET LOCALE "category=languagel @modifier]" ;

ALL
COLLATE
CTYPE
MONETARY
NUMERI C
TI ME

category =

SQL/R A.01.50

Short Reference

49

VI EW] * | view_name }

W DTH

SQL/R A.01.50

TERM NAL
PRI NTER
ASCl |
SET QUTPUT = EXPORT | FI LE["Jfilename["] |
DI F
NUL L
DATE = "date_fmt"
ECHO = [ON]|OFF]
COLSEP = "cha"
LENGTH = lines
SET NULL = ["char" | "string"] .
OVERFOW = ["cha" | "string"] '
PRI NTER = "device"
PROMPT = "prompt string"
ROWSEP = "cha"
W DTH = columns
DATE
FI ELD{ * | field_name }
LENGTH
LOCALE
SHOW{ MACRO{ * |"macro_name" } & ;
QUTPUT
PRI NTER

A.2 Constants

A.2 Constants

Constant Meaning

NULL represents anon defined empty field

@lat e represents the date-val ue that corresponds to the argument date
@ine represents the time-value that corresponds to the argument time
@\ow represents the date-val ue of the actua day

A.3 Functions

The arguments of al the listed functions can be constants, individual fields or formulas as
well as expressions.

Function Nname (Argument) Function Name (Argument)
@\BS (number) @NUM (string)
@CHAR (number) @0s (' stringl, string2)
@ATE (year, month, day) @RUARTER (date)
@ATETCCHAR (date, format) @UARTERBEG (date)
@ATEVALUE (date) @Rl GHT (string, length)
@AY (date) @ROUND (number, precision)
@AYS (number) @RPT (string, count)
@Il FFTI ME (datel, date2) @ECOND (date)
@l v (number, divisor) @BECONDS (number)
@-RACT (number) @BTRI NG (format, number)
@HOUR (date) @BUBSTR (string, start, length)
@HOURS (number) @ ve (' hour, minute, second)
@ NT (number) @'l MEVALUE (string)
@QEFT (string, length) @R M (string)
@Q.ENGTH (string) @QUPPER (string)
Q. ONER (string) @VALUE (string)
@1 NUTE (date) @\EEKBEG (date)
@1 NUTES (number) @\EEKDAY (date)
@D (number, divisor) @\EEKS (number)
@VONTH (date) @QYEAR (date)
@ONTHBEG (date) @QYEARBEG (date)

SQL/R A.01.50

B

Character Set Mapping

Like HP Eloquence, SQL/R uses the Roman8 character set internally. It is however
possibleto map datato atermina dependent character set inthe SQL /R editor and by using
the programt nmap.

B.1 How does this work ?

Usingtheenvironment variable TERM afilewiththeextension. map and which corresponds
totheterminal typeissearched for inthedirectory / usr/ sql r/ map. If thisfileisfound,
the character set is modified according to the definition in thefile.

If the environment variable SQLR_.MAP is defined, then the directory specified by the
SQLR_VAP is searched instead.

For example:

If the environment variable TERMhas the value 70060, then thefile
[usr/sql r/ map/ 70060. map isused to map the character set.

B.2 SQL/R Editor

The SQL /R editor automatically uses the procedure described above to map dl inputsand
outputs to the termina character set. If sql r exec is started from the editor, then its
terminal output is mapped as well.

Note
If files are created using any other editor than the SQL/R editor on a terminal
which does not have the Roman8 character set and national characters (e.g. umlaut
vowels) are used, then the file must be translated to the Roman8 character set. This
may be done by usingi conv that is part of HP-UX. Please refer toi conv () for
details.

SQL/R A.01.50

B.3 tmap

52

B.3 tmap

t map is an utility program that is available with SQL/R to map the character set during
terminal output. It also uses the procedure described above to carry out the mapping.

Usage:

/usr/sqlr/tmap [filel

The source of data can either be the standard input (st di n) or afile.

For example:

/usr/sqlr/tmap README
Displaysthefile README in the terminal character set.

/usr/bin/sqlrexec -tn xxx.sql | /usr/sqlr/tmap

Converts the output of sglrexec into the character set of the used terminal. (The argument
-t must be given in order to keep the prompt during the page break).

B.4 iconv

The HP-UX programi conv can be used to trandl atefilesfrom one character set to another.

For example:

iconv -f roman8 -t 1508859 1 README

Trandates the file README from the Roman8 character set to the | SO 8859/1 character
set during the output. The output is displayed on the stdout.

Further information oni conv (1) can be obtained using

man 1 iconv

SQL/R A.01.50

Character Set Mapping

53

B.5 sqlrexec

The output from sql r exec isin Roman8 character set. If the output isto a device with
a different character set, then the character set must be mapped accordingly, (for example
usingi conv ort map).

For example

sqlrexec -tn xxx.sql | /usr/sqlr/tmap

Converts the output of sglrexec into the character set of the used terminal. (The argument
-t must be given in order to keep the prompt during the page break).

sqlrexec -n xxx.sql | tr -d "\014"
iconv -f roman8 -t 1s08859_1 | more

Converts the output of sglrexec from Roman8 into the SO 8859/1 character set. The
output is piped through nor e. (The page break isremoved hereusing thet r command).

B.6 Supporting Other Terminal Names

In order to support termina devices using the 1SO 8859/1 character set, link the file
i s08859_1. nmap to theterminal dependent mapping filename.

For example:

cd /usr/sqlr/map
In is08859_1.map hp70060.map

SQL/R A.01.50

Using the terminal printer (Iprint)

C.1 Using lprint

Thisisadescription of | pri nt intheversion of 06/23/93. | pri nt makesit possibleto
print to alocal printer (attached to your termind). It works similar as the HP Eloquence
PRINTER IS 10 statement.

Usage:
Tprint [-r] [filel
You may either specify afilenameto |print or passthedataintostdin. The- r flag specifies

raw printing mode. Normally Iprint will expand a newline character (\ n) intoa\r\n
sequence. You may suppress this behaviour by giving the- r option.

For example:

11 | lprint
Tprint -r sample.DATA

C.2 How to configure Iprint to different terminals

Termina control is terminal type dependent. Normally, all required control sequences
should be defined properly by the HP Eloguence terminfo descriptions.

1. | print uses the TERM environment variable to identify the terminal type. A
corresponding (compiled) terminfo description isrequired.

o If the TERM NFOenvironment variable is undefined:
Thefollowingdirectoriesare searched for aterminfo description (inthisorder):

/usr/ el oquence/term nfo
fusr/lib/termnfo

SQL/R A.01.50

Using the terminal printer (Iprint) 55

o If the TERM NFOenvironment variableis defined (eg. /usr/uap/terminfo):

The directories defined by the TERM NFO variable are searched first (eg.
usr/uap/terminfo). If no terminfo description could be found, the following
directories are searched for aterminfo description:

/usr/ el oquence/term nfo
fusr/lib/termnfo

2. If the LONG terminal name starts with “hp ”, hp terminal printer protocol (S/U/F
response after output) will be assumed, else no protocol will be assumed.

For example:
70092|70092a|70092A|hp 7009x/239x series,

This is a HP Terminal

70060|70060 Terminal(vt320; 7 bit),

This is no HP Terminal

c1003|c1003a|1003|1003a|700-41,

This is no HP Terminal

3. | pri nt needs the following control sequence(s) (from terminfo) to activate the

printer:
Either

prtr_non (activate printer for n characters)
or

prtr_on (activate printer)

prtr_off (switch printer off)

The following keywords are used in the terminfo description:

Name Keyword 700/92 vt320 c1003
prtr_non mchp mchp=\ E&p%pl1%dW

prtr_on mch mch5=\ E&p13C nc5=\E[5i mcb="R
prtr_off mc4 mcd=\ E&p11C nc4=\E[4i mc4="T

SQL/R A.01.50

Index

.profile, 2—4

etc/PATH, 4

[etc/profile, 2, 3
lopt/sqlr/etc/chklic, 1
/opt/sglr/newconfig/ReleaseNotes, 1, 6
/tmp/update.log, 3
@ABS, 9, 23

@CHAR, 9,11

@DATE, 10, 27
@DATETOCHAR, 911
@DATEVALUE, 9, 10, 12
@DAY, 10, 29

@DAYS, 10, 31
@DIFFTIME, 10, 28
@DlV, 9,23,24
@FRACT, 9,24
@HOUR, 10, 30
@HOURS, 10, 31

@INT, 9, 25

@LEFT, 9,19
@LENGTH, 9, 20
@LOWER, 9, 20
@MINUTE, 10, 30
@MINUTES, 10, 31
@MOD, 9, 25
@MONTH, 10, 29
@MONTHBEG, 10, 30, 31
@NOW, 10, 36

@NUM, 9, 13

@POS, 9, 21
@QUARTER, 10, 29
@QUARTERBEG, 10, 30, 31
@RIGHT, 9, 19
@ROUND, 9, 26

@RPT, 9, 22

@SECOND, 10, 30
@SECONDS, 10, 31
@STRING, 9, 14

SQL/R A.01.50

@SUBSTR, 9, 19
@TIME, 10, 27
@TIMEVALUE, 9, 10, 17
@TRIM, 9, 22
@UPPER, 9, 20
@VALUE, 9, 18
@WEEKBEG, 10, 30, 31
@WEEKDAY, 10, 29
@WEEKS, 10, 31
@YEAR, 10, 29
@YEARBEG, 10, 30, 31

C

CALCULATE... BREAK, 42
Character Set, 51

chklic, 1

CREATE VIEW, 44, 45
CURRENCY OPTION, 41

D
DISPLAY ASDATE, 27
DISPLAY ASTIME, 27

E
Editor, 51

E
FIELD, 41
FIELD ... DISPLAY AS, 23

G
GROUP OPTION, 41

|

iconv, 52

Installation, 1

IS[NOT] NULL, 36, 44
ISNOT NULL, 44
ISNULL, 44

1SO 8859/1, 53

INDEX

57

is08859_1.map, 53

L
Iprint, 54

M
MONETARY, 41
MONEY, 41

N
NULL, 19, 35,41
NUMERIC, 41

o
OVERFLOW, 41

R
REPORT SELECT, 40
Romans8, 51

S

SELECT, 36

SET COLSEP, 37

SET ECHO, 37

SET NULL, 38

SET OUTPUT, 37

SET OVERFLOW, 38

SET ROWSEP, 37

sqlrexec, 53

SUPPRESS REPEATING VALUES, 41

T
TERM, 51
tmap, 51, 52

U
UNTIL GROUP BREAK, 42
USING LINEARLIST, 40

W
WHERE, 36, 44, 45

SQL/R A.01.50

